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ABSTRACT 
 
 

IMPROVING NEURAL NETWORK CLASSIFICATION TRAINING 
 
 
 
 
 
 
 
 

Michael E. Rimer 
 

Department of Computer Science 
 

Doctor of Philosophy 
 
 
 

The following work presents a new set of general methods for improving neural 

network accuracy on classification tasks, grouped under the label of classification-based 

methods.  The central theme of these approaches is to provide problem representations 

and error functions that more directly improve classification accuracy than conventional 

learning and error functions. 

The CB1 algorithm attempts to maximize classification accuracy by selectively 

backpropagating error only on misclassified training patterns.  CB2 incorporates a sliding 

error threshold to the CB1 algorithm, interpolating between the behavior of CB1 and 

standard error backpropagation as training progresses in order to avoid prematurely 

saturated network weights.  CB3 learns a confidence threshold for each combination of 

training pattern and output class.  This models an error function based on the 
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performance of the network as it trains in order to avoid local overfit and premature 

weight saturation.  PL1 is a point-wise local binning algorithm used to calibrate a 

learning model to output more accurate posterior probabilities.  This algorithm is used to 

improve the reliability of classification-based networks while retaining their higher 

degree of classification accuracy. 

These approaches are demonstrated to be robust to a variety of learning parameter 

settings and have better classification accuracy than standard approaches on a variety of 

applications, such as OCR and speech recognition. 
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Chapter 1 

Introduction 

 

The study of machine learning is largely concerned with improving the automation of 

decision making processes, ranging from function approximation (regression tasks) to 

classification or concept learning (selecting from a set of possible choices).  Examples of 

classification are performing medical diagnoses, optical character recognition, speech 

recognition, and document content identification. 

 

The artificial neural network (ANN) was inspired by biological models of neurological 

systems and is an established machine learning model with robust learning properties and 

simple deployment.  ANNs are often used as a “black box” that receives data 

observations as input and outputs decisions based on these observations.  This work 

focuses on studying and improving the theoretical and practical use of artificial neural 

networks in classification problem domains. 

 

1.1 Issues in learning 

In order for a learning model to output educated decisions, it must first be trained.  There 

are various issues involved in training that affect a model’s subsequent recognition 

performance.  To train a learner (whether it be a human or a machine), real data 

observations from the problem domain must be acquired.  In many problem domains, it is 

infeasible to acquire data for, or even model, the complete domain.  Hence, training 

consists of encountering a subset of instances picked in some fashion from the entire 
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problem domain.  A training set, T, consists of a finite number, N, of observations.  An 

observation, X, may be defined on a vector of k attributes (or features), 

 

X = (X1, X2, …, Xk), 

 

and is given an associated target value, y, indicating the correct decision: 

 

Training Set = {(Xn, yn) n = 1, 2, …, N}. 

 

In supervised learning, the model’s task is to accurately predict values for y given 

instances of X.  However, the main goal in learning is not for the model merely to 

memorize the training data, but rather to generalize what the limited training data teach in 

order to make correct decisions on future data encountered across the entire problem 

population. 

 

A learner must apply some inductive bias to forming a hypothesis that correctly classifies 

the training data.  However, if the learner overfits, or makes false assumptions on the 

general nature of the problem based on idiosyncrasies in the training set, this can become 

a detriment to generalization.  ANNs, like many other learning algorithms that can form 

complex hypotheses, are prone to overfitting.  There is an inherent tradeoff between 

fitting the training data perfectly and generalizing accurately over the entire population.  

Much work has gone into studying how to achieve this balance, with varying degrees of 

success, but intrinsically this remains an open problem. 
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1.2 Neural network training issues 

The iterative error backpropagation algorithm commonly used to train ANNs is adept at 

approximating continuous functions of high degree.  This learning algorithm can also be 

used in classification.  However, the mathematical representations of a classification task 

have different properties than that of function approximation, and there are certain 

distinctions in the training process of each.  This leads to important distinctions in the 

type of learning approach best suited to either task, which relate to avoiding overfit and 

achieving high generalization. 

 

To generalize well, error backpropagation must use a proper error minimization, or 

objective, function.  A common error function is minimizing sum-squared-error (SSE).  

The validity of using SSE as an objective function relies on the assumption that pattern 

outputs are offset by inherent Gaussian noise, being normally distributed about a cluster 

mean.  For function approximation of an arbitrary signal, this presumption often holds.  

However, this assumption is invalid for classification problems where the target vectors 

are class codings (i.e., arbitrary nominal or boolean values representing designated class 

labels).  In this case, it is better to maximize cross-entropy (CE) in order to discriminate 

among choices.  However, these objective functions provide mechanisms that do not 

explicitly reflect the goal of classification learning (i.e., achieving high recognition rates 

on unseen data). 
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1.3 Contribution of this work 

The contribution of this work is to improve on the conventional approach of training 

ANNs by minimizing a global error function.  Error functions like SSE and CE, 

maintaining routine statistical properties and mathematical continuity, are replaced with 

non-continuous error functions that seek to more directly train ANNs to generalize well 

on classification problems.  These methods are more analogous to how other learning 

models, like decision trees, perform concept-based learning, while still retaining the 

simplicity, speed and robustness of ANNs. 

 

This work presents several methods for learning classification tasks that are superior to 

existing learning algorithms.  These classification-based (CB) methods are implemented 

in various ways, but the general approach is to define an objective function that seeks to 

directly minimize classification error instead of attempting to approximate a function 

represented by transformed class labels (i.e., 0/1 targets).  This work is a collection of 

these methods, which have either been published previously or submitted for publication 

in various refereed journals or conferences.  Following is a summary of each chapter 

paper, followed by the publication reference. 

 

Chapter 2 presents the notion of classification-based objective functions.  It discusses 

properties of backpropagation learning as related to classification performance in detail.  

CB1, the first incarnation of a classification-based objective function, is presented.  CB1 

does not backpropagate an error signal through the network on correctly classified 

patterns.  CB1 is shown to discourage premature weight saturation and improve 
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generalization.  It performs successfully on speech recognition tasks, a large OCR data 

set and several benchmark problems selected from the UC Irvine Machine Learning 

Repository.  [Rimer, M. & Martinez, T. (2006).  Classification-based Objective 

Functions.  Machine Learning, vol. 63, no. 2, pp. 183-205.]1 

 

Chapter 3 illustrates how CB1, also called lazy training since it skips training on 

correctly-classified patterns, may be applied to a multi-tier speech model to improve 

recognition accuracy over training with CE.  [Rimer, M., Martinez, T. & Wilson, D. 

(2002).  Improving Speech Recognition Learning through Lazy Training, Proceedings of 

the IEEE International Joint Conference on Neural Networks IJCNN'02, pp. 2568-2573.] 

 

Chapter 4 presents CB2, or softprop, a combination of SSE and CB1.  It performs error 

minimization analogously to the “softmax” exploration policy used in Q-learning that 

combines greedy exploitation with conservative exploration in an optimization search.  

This exploration policy tends to be effective in complex problem spaces that have many 

local minima.  Implementing this methodology in ANN training is shown to achieve 

higher test accuracy and more robust solutions than either SSE or CB1. [Rimer, M. & 

Martinez, T. (2004).  Softprop: Softmax Neural Network Backpropagation Learning, 

Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN'04, 

pp. 979-984.] 

 

                                                 
1 This chapter is an extension of work previously published in [Rimer, M. & Martinez, T., IJCNN 2001; 
Rimer, M., Master’s Thesis, Brigham Young University, 2002]. 



www.manaraa.com

Chapter 1. Introduction 

 6 

Chapter 5 presents CB3, a classification-based algorithm which performs adaptive local 

modifications to the error function during training.  CB3 is designed to address the 

concern that ANN overfit is not only a global, but more particularly a local phenomenon, 

for which adaptive localized learning can be beneficial.  Based on the network’s success 

in learning individual training patterns, CB3 adjusts these patterns’ intended target values 

during training by learning individual confidence margins.  CB3 exhibits significantly 

improved generalization over conventional training, CB1, and CB2. [Rimer, M. & 

Martinez, T. (2006).  CB3: An Adaptive Error Function for Backpropagation Training, 

Neural Processing Letters, vol. 24, no. 1, pp. 81-92.] 

 

Chapter 6 performs an in-depth comparative analysis of SSE, CE, CB1, CB2, and CB3, 

measuring their robustness to initial conditions, learning parameters, and convergence 

properties.  CB3 is shown to be superior with respect to all of these.  [Rimer, M. & 

Martinez, T.  (2006).  Analysis of Classification-based Error Functions, submitted to 

Machine Learning.] 

 

Chapter 7 presents PL1, a novel method of calibrating a learning model.  Calibration 

refers to how accurate a learning model is in predicting posterior probabilities.  Utility 

theory dictates that, in order for a general learning model to perform optimally, it must 

output well-calibrated probabilities.  In other words, model calibration is important since 

a learning model does not operate in isolation, but rather outputs confidence values which 

must subsequently be acted on by an operator to make a final decision.  The efficacy of 

using PL1 to calibrate ANNs in order to reduce probability estimation error is 
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demonstrated.  [Rimer, M., Peterson, A. & Martinez, T. (2007).  Improving Posteriors 

with Point-wise Local Binning, submitted to Neural Processing Letters.] 

 

Chapter 8 presents results of applying PL1 to CB algorithms.  The above 

implementations of CB learning are designed to output correct classifications as much as 

possible, but in doing so, neglect to output accurate probability estimates of these 

decisions.  The PL1 algorithm is used as a post-processing step to calibrate CB1-3 to 

output more accurate posterior probabilities.  In particular, CB3 is shown to operate with 

similar precision to CE when both are calibrated, while CB3 retains its higher degree of 

generalization.  [Rimer, M. & Martinez, T. (2007).  Calibrating Classification-based 

networks to improve posteriors, submitted to Neural Processing Letters.] 

 

Chapter 9 presents an alternate stochastic model for learning classification tasks.  Four 

heuristics are presented for selectively choosing which patterns are presented to the 

network during training.  The primary purpose of this work at the time of publication was 

to illustrate how functionally redundant training patterns may dynamically be culled from 

the training set to dramatically increase learning speed without degrading accuracy.  

[Rimer, M., Andersen, T. & Martinez, T. (2001).  Speed Training: Improving Learning 

Speed for Large Data Sets, IJCNN'2001: INNS-IEEE International Joint Conference on 

Neural Networks, Washington, D.C., pp. 2662-2666.] 
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The following papers were developed concurrently with the above chapters.  Though not 

directly related to classification-based learning, they provide similar studies in the 

optimization of ANN training and are included here as appendices for completeness. 

 

Appendix A is a study of the optimal network size for ANNs operating alone in contrast 

to networks included in an ensemble.  It is shown that the optimal size for networks 

operating in an ensemble is smaller than for a network operating alone on the tested data 

sets.  [Andersen, T., Rimer M. & Martinez, T. (2001).  Optimal Artificial Neural Network 

Architecture Selection for Bagging, IJCNN'2001: INNS-IEEE International Joint 

Conference on Neural Networks, Washington, D.C., pp. 790-795.] 

 

Appendix B presents oracle learning, in which we study how a small neural network may 

be trained to mimic the performance of a much larger network.  Having a small network 

is a practical consideration when developing a recognition system that must have a small 

memory footprint.  It is demonstrated that an oracle-trained network can exhibit better 

performance than a network of equivalent size trained directly on the training data.  

[Menke, J., Peterson, A., Rimer, M. & Martinez, T.  (2002). Network simplification 

through oracle learning. Proceedings of the IEEE International Joint Conference on 

Neural Networks IJCNN'02, pp. 2482-2487.] 
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Chapter 2 

Classification-based Objective Functions 

 

MICHAEL RIMER           mrimer@axon.cs.byu.edu 

TONY MARTINEZ                   martinez@cs.byu.edu 

Computer Science Department, Brigham Young University, Provo, UT 84602, USA 

Phone: (801) 422-6464       Fax: (801) 422-0169 

 

 

Abstract.  Backpropagation, similar to most learning algorithms that can form complex 

decision surfaces, is prone to overfitting.  This work presents classification-based 

objective functions, an approach to training artificial neural networks on classification 

problems.  Classification-based learning attempts to guide the network directly to correct 

pattern classification rather than using common error minimization heuristics, such as 

sum-squared error (SSE) and cross-entropy (CE), which do not explicitly minimize 

classification error.  CB1 is presented here as a novel objective function for learning 

classification problems.  It seeks to directly minimize classification error by 

backpropagating error only on misclassified patterns from culprit output nodes.  CB1 

discourages weight saturation and overfitting and achieves higher accuracy on 

classification problems than optimizing SSE or CE.  Experiments on a large OCR data set 

have shown CB1 to significantly increase generalization accuracy over SSE or CE 

optimization, from 97.86% and 98.10%, respectively, to 99.11%.  Comparable results are 
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achieved over several data sets from the UC Irvine Machine Learning Database 

Repository, with an average increase in accuracy from 90.7% and 91.3% using optimized 

SSE and CE networks, respectively, to 92.1% for CB1.  Analysis indicates that CB1 

performs a fundamentally different search of the feature space than optimizing SSE or 

CE and produces significantly different solutions. 

 

1 Introduction 

 

Artificial neural networks have received substantial attention as robust learning models 

for applications involving classification and function approximation (Rumelhart, Hinton, 

& Williams, 1985).  This work proposes the use of classification-based (CB) objective 

functions to improve backpropagation, increasing generalization on complex 

classification tasks.  The CB1 algorithm is presented as the main contribution.  It is an 

example of a CB objective function suited to learning classification tasks.  CB1 seeks to 

directly minimize classification error by backpropagating error only on misclassified 

patterns from output nodes that are responsible for the misclassification.  In doing so, it 

updates the network parameters as little as possible.  This technique discourages weight 

saturation and overfitting and is conducive to higher accuracy in classification problems 

than optimizing with respect to common error functions, such as sum-squared error (SSE) 

and cross-entropy (CE). 

 

CB1 is shown to perform markedly better on a large OCR data set than an optimized 

backpropagation network learning with respect to SSE or CE, increasing classification 
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accuracy from 97.86% and 98.10%, respectively, to 99.11%.  Comparable increases in 

accuracy are achieved on several classification problems from the UC Irvine Machine 

Learning Repository, with an average increase in accuracy from 90.7% and 91.3% for 

optimized SSE and CE networks, respectively, to 92.1% for CB1 performing 10-fold 

stratified cross-validation.  Analysis indicates that CB1 performs a fundamentally 

different search of the feature space than backpropagation optimizing SSE or CE and 

produces significantly different solutions. 

 

A background discussion and comparison of common objective functions to CB1 is 

provided in Section 2.  The CB1 heuristic is presented in Section 3.  Experiments and 

analysis are given in Section 4 and discussion in Section 5.  Further discussion of 

learning issues with feed-forward backpropagation neural networks, overfitting, and how 

these relate to CB1 is presented in Section 6.  Future work is outlined in Section 7 and 

conclusions are presented in Section 8. 

 

2 Objective Functions 

 

Since gradient descent procedures, such as backpropagation, do not allow direct 

minimization of the number of misclassified patterns (Duda, Hart, & Stork, 2001), an 

error or objective function must be derived that results in increased classification 

accuracy as objective error is minimized.  Network output values must have a 

corresponding error measure derived by their deviance from target output values.  

Quantifying the output error provides a way for iteratively updating the network weights 
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in order to minimize that error and thereby achieve more accurate output.  However, error 

functions do not always decrease monotonically with the classification error, which is the 

real goal of the learner. 

 

Classification of N classes is often viewed as a regression problem with an N-valued 

response, with a target value of 1 in the nth position if the observation falls in class n and 

0 otherwise (LeBlanc & Tibshirani, 1993).  The values of zero and one can be considered 

idealized or hard target values.  However, in practice there is no reason why class targets 

must take on these values. 

 

To generalize well, a network must be trained using a proper objective function.  

Backpropagation training often uses an objective function that encourages making 

weights larger in an attempt to output a value approaching hard targets of 0 or 1 (±1 for 

the htan function).  Using hard targets is a naive way of training and creates several 

practical problems.  Different portions of the data are learned at different times during 

training, and using hard targets not only often leads to premature weight saturation, 

making it harder and slower to learn patterns that have yet to be learned, but also forces 

the learner to overfit on patterns that have already been learned.  One conventional 

approach uses “softer” targets like 0.1 and 0.9.  This presents a less severe solution but 

still suffers from overfitting. 

 

Rankprop (Caruana, Baluja, & Mitchell, 1996) provides an alternative method to training 

with hard target values and empirically shows that it improves generalization.  Rankprop 
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records the output of the learner for each training pattern.  It then sorts the patterns in the 

training set based on class, then according to output values.  Thus, a rank of the patterns 

consistent with the current model is developed and used to define the target values on the 

next epoch.  The idea behind Rankprop is that in the case of complex nonlinear solutions 

a simpler, less nonlinear function is provided to learn instead.  The resulting simpler 

model often generalizes better.  CB1 also provides a simpler function for the network to 

learn that leads to better generalization. 

 

2.1 Conventional objective functions 

The validity of using common differentiable measures like SSE as an objective function 

to minimize error relies on the assumption that pattern outputs are offset by inherent 

gaussian noise, being normally distributed about a cluster mean.  For approximating the 

function of an arbitrary signal this presumption often holds.  However, this assumption is 

invalid for classification tasks, where assigned real-valued target vectors are arbitrary 

values used to represent class labels.  This suggests that other error metrics are more 

suited to classification problems. 

 

In (LeCun, Denker, & Solla, 1990), a study of the digits problem revealed that 

heuristically reducing the number of network parameters by a factor of two increased 

training set MSE by a factor of ten, while generalization MSE increased by only 50%, 

and test set classification error actually decreased.  This suggests that minimizing MSE 

might not be a reliable objective function for complex classification tasks.  This also 

implies that comparison studies showing “improvements” through a reduction of 
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SSE/MSE on classification tasks are not significant unless classification accuracy 

increases likewise. 

 

Cross-entropy (CE) assumes idealized class outputs (i.e., target values of zero or one for 

a sigmoid activation) rather than noisy outputs as does SSE (Mitchell, 1997) and is 

therefore more appropriate to classification problems.  The classification figure-of-merit 

(CFM) objective function was introduced in (Hampshire II, 1990) for learning 

classification problems when it was shown that SSE and CE errors are not necessarily 

correlated with classification accuracy.  CFM separates the values of network outputs by 

as large a range as possible such that error minimization is monotonic with increasing 

classification accuracy.  Like SSE and CE, this metric encourages weight saturation, 

which is often indicative of overfitting and detrimental to generalization (Bartlett, 1998). 

 

2.2 Classification-based objective functions 

Generalizing well, not minimizing error with respect to an objective function, is the goal 

of learning.  LeCun’s digits study mentioned above illustrates how objective functions 

can inaccurately reflect how well a problem has been learned.  Hence, the objective 

function chosen for learning should approximate the true goal of the learner as closely as 

possible.  CB1 more directly portrays how well the network has learned to classify the 

training patterns. 

 

Similar to CFM, CB1 also attempts to increase the range between output activations.  

However, CB1 widens the range between outputs only when there is classification error.  
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When a misclassification is made, error is backpropagated only from those outputs that 

are credited with producing the error.  Observe that this effectively narrows the gap 

between outputs, as they are transposed with respect to their traditional 0-1 target values.  

This approach allows the network to relax more conservatively into a solution and 

discourages weight saturation and overfitting. 

 

3 CB1: A Classification-based Error Heuristic 

 

There is an inherent tradeoff between fitting the (limited) training data sample perfectly 

and generalizing accurately on the entire population (see Section 6.4).  There are several 

possible ways to process the network’s output vector in calculating an error signal for 

backpropagation to fit the data properly.  A simple variant involves modifying the 

objective function by providing a maximum error tolerance threshold, dmax, which is the 

smallest absolute output error to be backpropagated.  In other words, given dmax > 0, a 

target value, tj, and network output, oj, no network update occurs if the absolute error | tj – 

oj | < dmax.  This threshold is arbitrarily chosen to represent a point at which a pattern has 

been sufficiently approximated.  With an error threshold, the network is permitted to 

converge with smaller weights (Schiffmann, Joost, & Werner, 1993).  More dynamic 

approaches, such as Rankprop (Caruana, 1995), avoid the use of pre-defined “hard” 

targets, setting ranked “soft” target values for the training patterns each epoch. 

 

CB1, introduced here, considers the entire output vector of the network to determine the 

error of each output node. For each pattern considered, CB1 backpropagates error 
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through the network only on misclassified patterns.  As this technique forces networks to 

learn only when explicit evidence is presented that their state is a detriment to 

classification accuracy, we have called the approach classification-based training.  Like 

Rankprop, CB1 avoids the use of hard target values.  However, rather than providing soft 

targets, it avoids the use of predetermined target values altogether.  The objective of CB 

training is not to minimize the error between target and output values, but rather to 

produce output values that can be accurately translated to correct classifications.  With 

CB training, smaller weights near zero can provide an acceptable solution for 

classification tasks.  Keeping weights smaller avoids problems caused by weight 

saturation. 

 

Network weights are updated during CB training exclusively to minimize classification 

error.  When the network misclassifies a pattern, credit for the error is assigned to two 

sources.  The first is the set of output nodes with higher output values than the target class 

node (resulting in the system outputting the wrong class value).  The second is the target 

output node itself, which outputs a value too low to produce the correct classification.  

This approach is formalized as follows. 

 

3.1 CB1 error function 

Let N be the number of output nodes in a network.  Let o designate the activation value of 

a node (0 ≤ o ≤ 1 for sigmoid).  Let ok be the activation value of the kth output node in the 

network (1 ≤ k ≤ N).  Let T designate the target class for the current pattern and ck signify 

the class label of the kth output node.  For target output nodes, ck = T, and for non-target 



www.manaraa.com

Chapter 2. Classification-based Objective Functions 

 17 

output nodes, ck ≠ T.  Non-target output nodes are called competitors.  Often, class labels 

are indicated in training by setting the target value of one output node high and setting the 

rest low.  This restriction is not made here, as it is possible for more than one output node 

to act as a target node for a class label in the general case.  However, for the remaining 

discussion standard 1-of-N target designations are assumed. 

 

Let oTmax denote the value of the highest-outputting target output node, or formally 

 

 oTmax ≡ max { ok : ck = T }. 

 

Let o~Tmax denote the value of the competitor outputting the highest o, 

 

 o~T max ≡ max { ok : ck ≠ T }. 

 

The error, ε, back-propagated from the kth output node is then defined as 

 

εk ≡ 








≥≠−
≥=−

otherwise0

)( and  if

)( and  if

maxmax

maxmax~max~

TkkkT

TTkkT
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           (1) 

 

The error (1) represented in closed form is 

 

εk ≡ ( kT oo −max~ )I( )( and maxmax~ TTk ooTc ≥= ) + ( kT oo −max )I( )( and maxTkk ooTc ≥≠ ) 
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where I is the indicator or characteristic function.  Thus, a target output generates an error 

signal only if there is some competitor with an equal or higher value than oTmax, signaling 

a potential misclassification.  Non-target outputs likewise generate an error signal only if 

they have an output equal or higher than oTmax, indicating they are responsible for the 

misclassification.  The intuitive rationale behind this is that if the error is continually 

reduced on misclassified patterns, they will eventually be classified correctly. 

 

The error delta used for backpropagation is 

 

δk = εk f 
′
(ok) 

 

where f 
′
 (ok) is the standard error gradient, which is 

 

 f 
′
 (ok)  = ok (1 - ok) 

 

for a sigmoid squashing function, and can be removed on output nodes when using cross-

entropy (Joost & Schiffmann, 1998). 

 

To illustrate how CB training works, consider a three-class problem.  For a particular 

pattern, assume that the third class is the target.  Traditionally, this translates into a target 

vector of (0, 0, 1).  Assume that on this pattern, a 3-output network outputs (0.1, 0.2, 0.4).  

While the third output (the target) has substantial squared error (0.36), the first two output 
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values (the competitors) are sufficiently low, enough so that it is possible to extract the 

correct classification (the third class is chosen since its value is highest).  Since the 

pattern is classified correctly, the network parameters remain unchanged. 

 

Only if one of the competitors outputs a higher value than the target would a non-zero 

error signal be backpropagated from any of the output nodes.  In the case that the network 

outputs (0.1, 0.4, 0.3), both the second and third output nodes would backpropagate error: 

the second since it outputs higher than the target node, and the third, since a competitor 

outputs a higher value than it.  The error signal is set at the minimum amount possible to 

produce a correct classification. 

 

3.2 Advantages of CB training 

When a pattern is already classified correctly, forcing output values closer to 0 or 1 often 

results in weight saturation and overfitting.  This needlessly increases network variance 

(sensitivity to the training data), increasing classification error on test data.  Training 

without idealized or predetermined target outputs allow a pattern to be potentially 

“learned” with any target node output, providing competitors output lower values.  This 

insight is the driving motivation behind CB training, which avoids this practice. 

 

CB training of a network proceeds at a different pace than optimizing SSE or CE as the 

objective function.  Weights are updated only through necessity.  Backpropagating a non-

zero error signal from only the outputs that directly contribute to classification error 

results in considerably fewer weight updates overall (observe that this number is 
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proportional to the classification accuracy) and allows the model to relax more gradually 

into a solution.  CB training learns only as much as required to remove misclassifications 

and thereby discourages overfitting.  This approach is reminiscent of training with an 

error threshold; however, whereas a fixed error threshold causes training to stop at a pre-

specified point, meaning weights must increase to a magnitude sufficient to achieve this 

threshold, CB training dynamically halts learning at the first possible point that correctly 

classifies a training pattern.  This can be considered an implementation of a dynamic 

error threshold that is unique to each training pattern and network state. 

 

3.3 Increasing the margin with CB training 

Figure 1 illustrates how sample variance in the training set can influence the decision 

surface arrived at using SSE and CB1 error functions on a two-class problem.  

Overfitting is minimized in CB training because outliers (noisy patterns) have minimal 

detrimental impact to the decision surface’s accuracy.  This is because the target output is 

only required to output a value negligibly higher than the highest competitor before the 

training process stops updating the network parameters.  In Figure 1b, the CB1 decision 

surface remains next to a noisy pattern.  This is in contrast to conventional SSE training, 

where hard target values of 0 and 1 require pushing the decision surface as far away from 

all training points as possible, including noisy outliers (see Figure 1a).  Hence, test 

patterns in the area near the question mark falling next to an outlier of the competing 

class have a better chance of being correctly classified and network variance is 

substantially reduced. 
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Figure 1.  Typical decision boundaries for SSE networks (a,d), CB1 networks without an 

error margin (c), and CB1 with a small error margin (b,d).  CB1 induces a boundary more 

robust to noisy patterns. 

 

When CB training, it is common for the highest outputting node in the network, which 

we will call omax, to output a value only slightly higher than the second-highest-outputting 

node (see Figure 2).  This is true for correctly classified patterns (those above 0 in Figure 

2), and also for misclassified ones (those below 0).  This means that most training 

patterns remain physically close to the decision surface throughout training.  In the 

absence of outliers, then, one would expect the heuristic to arrive at a decision surface 

similar to those portrayed in Figure 1c.  According to the application this might not be 

desirable. 
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Figure 2.  Network output error margin after CB training on OCR data set.  Values of 

output nodes are typically very close together, yet nearly all patterns are correctly 

classified. 

 

An error margin, µ, can be introduced during training that serves as a confidence buffer 

between the outputs of target and competitor nodes.  The value for µ can range from –1 

to +1 under the sigmoid function.  For no error signal to be backpropagated from the 

target output, an error margin requires that o~Tmax + µ < oTmax.  Conversely, for a 

competing node k with output ok, the inequality ok < oTmax - µ must be satisfied for no 

error signal to be backpropagated from k.  This augmentation to (1) is presented as 

 

εk ≡ 








−≥≠−−−
≥+=−+
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where min(� ,1) and max(� ,0) enforce the [-1,1] error range of the logistic function.  In this 

way, CB1 with a small µ (e.g. 0.1) approximates the SSE solution and the margin is 

maximized even in the absence of outliers (see Figure 1d). 

 

During the training process, the value of µ can be altered and might even be negative to 

begin with, not expressly requiring correct classification at first.  This gives the network 

time to configure its parameters in an even more uninhibited fashion. Then µ is increased 

to an interval sufficient to account for the variance that appears in the domain data, 

allowing for robust generalization.  The value of µ can also be decreased, and remain 

negative as training is concluded to account for noisy outliers.  A preliminary analysis of 

updating µ during training has shown promise (Rimer & Martinez, 2004). 

 

Including a margin also decreases the amount of “classification oscillation” that occurs as 

outputs react to one another.  When µ = 0, patterns remain close to the decision surface 

during training.  As training proceeds and the decision surface shifts around, patterns 

frequently slide back to the wrong side of the decision surface.  Introducing a small, 

positive µ requires patterns to be situated further away from the decision surface and 

reduces the incidence of renewed misclassification, leading to quicker convergence.  

Observe that at the extreme value of µ = 1, CB1 reverts to standard SSE training, with 

target values of 1.0 and 0.0 required for all positive and negative classes, respectively. 
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4 Experiments and Analysis 

 

Neural networks were trained through backpropagation optimizing SSE and CE, and 

through CB1 to explore empirical advantages of CB training techniques.  These models 

include: 

• A single-output network on two-class problems (positive patterns are assigned a 

target value of 1.0, negative patterns are assigned a target value of 0.0) 

• A single N-output network (one output per class on multi-class problems) 

• N independent single-output networks on multi-class problems (one per class) 

 

Experiments were conducted over a variety of data sets with varying characteristics, 

differing by: 

• Size of data set (150 instances to half a million) 

• Number of features (two to hundreds) 

• Number of labeled data classes (two to forty-seven) 

• Complexity of data distribution (nearly linearly separable to highly complex) 

 

Problems were drawn from the UC Irvine Machine Learning Database Repository (UCI 

MLR) (Blake & Merz, 1998) and from a large database of machine printed characters 

gathered for OCR.  This provides a vantage point from which to evaluate the robustness 

of CB1. 

 



www.manaraa.com

Chapter 2. Classification-based Objective Functions 

 25 

In empirical comparisons among different learning methods, appropriate training 

parameters were determined to optimize each model.  For further conceptual analysis and 

illustration of the behavior of these systems, results of experiments using a range of 

parameters are provided. 

 

4.1 Data sets 

The performance of SSE versus CB training has been evaluated on an OCR data corpus 

(OCR) consisting of roughly 370,000 alphanumeric character patterns and 47 symbolic 

classes, partitioned into 277,000 training patterns, 31,000 holdout set patterns, and 62,000 

test patterns.  Results on this data set were first presented in (Rimer, Andersen, & 

Martinez, 2001a). 

 

Two network topologies were evaluated for learning OCR, a single N-output network and 

N single-output networks (N = 47 for OCR). 

 

Additionally, eight well-known classification problems were selected from the UCI 

MLR.  Descriptions of the selected data sets are listed as follows: 

 

ann – 7200 instances with 15 binary and 6 continuous attributes in 3 

classes.  The task is to determine whether a patient referred to the clinic is 

hypothyroid. 
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bcw – 699 instances with 9 linear attributes in 2 classes.  The task is to 

detect the presence of malignant versus benign breast cancer. 

ionosphere – 351 instances with 34 numeric attributes in 2 classes.  This 

data set classifies the presence of free electrons in the ionosphere. 

iris  – 150 instances with 4 numeric attributes in 3 classes.  This classic 

machine learning data set classifies the species of various iris plants based 

on physical measurements.   

musk2 – 6598 instances with 166 continuous attributes in 2 classes.  The 

task is to predict whether new molecules will be musks or non-musks. 

pima – 768 instances with 8 numeric attributes in 2 classes.  The 

predictive class in this data set is whether or not the tested individual has 

diabetes. 

sonar – 208 instances with 60 continuous attributes in 2 classes.  The task 

is to discriminate between sonar signals bounced off a metal cylinder and 

those bounced off a roughly cylindrical rock. 

wine – 178 instances with 13 continuous attributes in 3 classes.  The 

attributes give various parts of the chemical composition of the wine and 

the task is to determine the wine’s origin. 

A single network with one output per class was used to learn these problems.  Results on 

UCI MLR problems were averaged using 10-fold stratified cross-validation. 
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4.2 Training parameters 

Experiments were performed comparing the SSE, CE, and CB1 objective functions.  

Fully connected feed-forward networks with a single hidden layer trained through 

standard on-line backpropagation were used.  In all experiments, weights were initialized 

to uniform random values in the range [-0.1,0.1].  Networks trained to optimize SSE and 

CE used an error tolerance threshold (dmax, described in Section 2) of 0.1. 

  

Feature values (both nominal and continuous) were normalized between zero and one.  

Training patterns were randomly shuffled before each epoch.  For each simulation, a 

random seed for network weight initialization and pattern shuffling was used across all 

networks tested. 

 

Network learning parameters on OCR for each error function have been extensively 

optimized over the course of hundreds of empirical evaluations, comprised of tests of 

networks with topologies of one to three hidden layers, ten to five hundred hidden nodes 

per layer, learning rates from 0.01 to 0.5, and momentum from 0.0 to 0.99.  We 

performed two sets of experiments on OCR.  One tested multi-task learning (MTL), or 

using a single network with multiple output nodes, and the other used a separate network 

to learn each problem class.  Pattern classification was determined by winner-take-all 

(the class of the highest outputting node is chosen) on all models tested. 

 

For experiments presented here evaluating MTL, a hidden layer of 128 nodes was used.  

For experiments presented here training a separate, single output node network for each 
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class label, each network has a single hidden layer of 32 hidden nodes.  The learning rate 

was 0.1 and momentum was 0.7.  Training was halted after 50 epochs (nearly 14 million 

patterns) of seeing no improvement in accuracy on the holdout set.  The model selected 

for testing was the one with the best holdout set classification accuracy.  Although we 

only present empirical results for this combination of parameter values, it is noted that 

relative accuracies among the error functions were typical and comparable over the range 

of learning parameters, network sizes and topologies tested. 

 

On UCI MLR data sets, network size was optimized to maximize generalization for each 

problem and error function.  Optimized numbers of hidden nodes used for learning UCI 

MLR data sets are listed in Table 1.  Learning rate was 0.1 and momentum was 0.5 for all 

UCI MLR problems.  Training continued until the training set was successfully learned or 

until holdout error ceased to decrease for 500 consecutive epochs.  The model selected 

for testing was the one with the best holdout set classification accuracy. 

 

Table 1.  Network architectures on MLR problems. 

The number of input, hidden, and output nodes per network is shown. 

Data set SSE 
Network 

CE 
Network 

CB1 
Network 

ann 21-30-3 21-30-3 21-30-3 
bcw 9-15-2 9-25-2 9-10-2 
ionosphere 34-7-2 34-9-2 34-9-2 
iris 4-1-3 4-1-3 4-1-3 
musk2 166-5-2 166-5-2 166-5-2 
pima 8-8-2 8-8-2 8-16-2 
sonar 60-15-2 60-5-2 60-15-2 
wine 13-16-3 13-8-3 13-16-3 
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4.3 Results 

Empirical results on OCR and the UCI MLR data sets are presented in the following sub-

sections. 

 

4.3.1 OCR data set 

Tables 2 and 3 display the results of standard SSE and CE backpropagation versus CB1 

on OCR.  Train % and Test % are the training and test set accuracy on the selected 

network model in percent, averaged over five training runs.  How well each model 

generalizes is indicated by Test % / Train %.  Train MSE and Test MSE are the mean 

squared errors for the training and test sets on the epoch from which this model was 

chosen.  Best values are printed in bold face. 

 

Table 2.  Results on OCR with N single-output node networks. 

Error function Train %  Test % Test %/Train %  Train MSE Test MSE 
SSE 99.28 97.86 .9857 .0047 .0092 
CE 99.37 98.10 .9872 .0094 .0110 
CB1 (µ = 0.05) 99.61 99.11 .9950 .1830 .2410 
 

Table 3.  Results on OCR with one N-output node network. 

Error function Train %  Test % Test %/Train %  Train MSE  Test MSE 
SSE 98.79 98.62 .9983 .0274 .0313 
CE 99.09 98.91 .9982 .0160 .0221 
CB1 (µ = 0) 99.15 98.96 .9981 .1594 .1800 
CB1 (µ = 0.1) 99.38 99.26 .9988 .0992 .0968 
 

These tests demonstrate that multi-task learning of OCR generalizes better than using a 

separate network to learn each problem class with SSE and CE objective functions.  Even 

though training accuracy is lower on the SSE and CE multi-output networks than 
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multiple networks, generalization (i.e., test accuracy / train accuracy) is improved.  

Observe that with a single multiple-output network, test set accuracy is within a fraction 

of one percent of training set accuracy using any of the tested error functions.  This 

occurs since little overfitting can occur in this size network when attempting to learn all 

classes simultaneously.  Worse generalization was observed using networks with more 

hidden nodes.  When training a separate network for each class, each network has much 

greater potential to overfit since there are many more network parameters.  This behavior 

is exhibited to lesser degree with CB training. 

 

Optimizing CE on OCR trains and generalizes better than SSE, and CB1 performs 

significantly better than both of these (p < 0.0001).  Network models generated with CB1 

also have improved generalization.  Observe that CB1 has a much higher MSE than the 

other methods, yet overfitting is reduced and generalization is improved.  This is an 

important point that is discussed further in Section 5. 

 

Generalization with the best CB1 model is 0.73% greater than the best model trained with 

SSE and 0.53% greater that the best CE-trained model.  Considering only multiple-output 

networks, error drops from 1.38% for SSE and 1.09% for CE to 0.74% for CB1, increases 

in accuracy of 0.64% and 0.35%, respectively (p < 0.0001).  Considering only the 

multiple single-output network models, error drops from 2.14% with SSE and 1.90% 

with CE to 0.89% with CB1, increases in accuracy of 1.25% and 1.01%, respectively (p < 

0.0001). 
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4.3.2 UCI MLR data sets 

Table 4 lists the results of a naïve Bayes classifier taken from (Zarndt, 1995), standard 

SSE and CE backpropagation, and CB1 with SSE and CE error updates (whether the 

error gradient, discussed in Section 3.1, is o(1-o) or 1, respectively) on eight UCI MLR 

classification problems.  Results were gathered using 10-fold stratified cross validation 

and averaged over thirty randomly-initialized training runs. 

 

The first value in each cell is the average classification accuracy of the selected model.  

The second value is the standard deviation over all runs.  The best generalization for each 

problem is bolded and the second best value is italicized.  An asterisk indicates a 

confidence within p < 0.05 that the highest accuracy is significantly better than the 

second highest.  The last two columns indicate the difference in value between CB1 (with 

SSE or CE error gradient) and SSE and CE optimization.  Here, a higher first value in 

each cell indicates greater improvement, and a lower second value indicates smaller 

standard deviation. 
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Table 4.  Results on selected data sets from UCI MLR using 10-fold stratified cross-

validation.  Best values are shown in bold and second best in italics.  Statistical 

significance of p < 0.05 of the most accurate algorithm is signified by an asterisk. 

Data set Bayes SSE CE CB1  
SSE 

CB1 
CE 

CB1 SSE 
– SSE 

CB1 CE – 
CE 

ann 99.7*  
0.1 

98.25 
0.54 

98.33 
0.53 

97.62 
0.47 

98.76 
0.51 

-0.63 
-0.07 

0.43 
-0.02 

bcw 93.6 
3.8 

96.96 
2.01 

97.06 
1.81 

97.22 
2.01 

97.36*  
1.81 

0.26 
0.0 

0.30 
0.0 

ionosphere 85.5 
4.9 

89.00 
4.72 

90.80 
4.64 

90.60 
3.75 

90.88 
3.87 

1.60 
-0.97 

0.08 
-0.77 

iris 94.7 
6.9 

93.83 
5.68 

94.37 
5.87 

95.47*  
5.31 

95.37* 
5.25 

1.64 
-0.37 

2.00 
-0.62 

musk2 97.1 
0.7 

99.06 
0.37 

98.56 
0.62 

99.15 
0.36 

99.27 
0.29 

0.09 
-0.01 

0.71 
-0.33 

pima 72.2 
6.9 

76.26 
4.24 

76.11 
4.36 

76.69* 
3.43 

76.82*  
6.46 

0.43 
-0.81 

0.71 
2.10 

sonar 73.1 
11.3 

76.06 
9.37 

78.87 
9.03 

80.77 
9.02 

81.92*  
8.60 

4.71 
-0.35 

3.05 
-0.43 

wine 94.4 
5.9 

96.29 
4.45 

96.74 
4.13 

98.31*  
3.49 

97.19 
3.47 

2.02 
-0.96 

0.45 
-0.66 

Average 88.79 
5.06 

90.69 
3.92 

91.35 
3.87 

91.97 
3.48 

92.20 
3.79 

1.28 
-0.44 

0.85 
-0.08 

 

The average increase in classification accuracy is from 90.69% for SSE training to 

91.97% for CB1 with SSE error gradient, a 1.28% decrease in error (significant to p < 

0.035).  Using CB1 with a CE error gradient demonstrated a 0.85% increase in accuracy 

over CE training, from 91.35% to 92.20%.  An overall decrease in standard deviation also 

indicates that CB training is more robust to initial parameter values and pattern variance 

then SSE and CE optimization.  This supports the hypothesis that weight saturation and 

overfit is reduced and generalization is improved by CB training. 

 



www.manaraa.com

Chapter 2. Classification-based Objective Functions 

 33 

5 Discussion 

 

Standard backpropagation and other gradient descent learning techniques do not consider 

or attempt to maximize the number of correctly classified training patterns (Duda, Hart, 

& Stork, 2001).  CB1 incorporates a more direct minimization of misclassified patterns in 

gradient descent procedures by reducing error on only misclassified patterns. 

 

Since CB1 does not train using ideal target values like SSE and CE, MSE drops very 

slightly as training accuracy is improved (see Figure 3a).  This is in contrast to the strong, 

immediate drop in MSE illustrative of standard SSE optimization (see Figure 3b).  CE 

displays similar behavior to SSE optimization but is omitted from the following 

discussion for brevity. 
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Figure 3a.  Classification accuracy and MSE during CB1 training. 

MSE decreases very slowly during training. 
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Figure 3b.  Classification accuracy and MSE during SSE optimization. 

MSE decreases quickly during training. 
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In Figure 3a, rather than converging to zero, MSE remains just under 0.25 as training 

progresses with � =0.  With � =0.1, MSE decreases to around 0.15.  A large MSE is 

incurred by pattern outputs being very far away from the conventional 0-1 target values.  

Observe that a MSE of 0.25 is equivalent to a mean error of 0.5, which illustrates that 

output activations are close to 0.5 on average throughout training.  This indicates that the 

weights for these outputs are close to zero.  This suggests that CB training performs a 

fundamentally different search in feature space than standard SSE/CE optimization.  It 

descends towards different minima and converges to a feature location physically distant 

from SSE/CE solutions.  This also indicates that high-accuracy solutions exist where SSE 

are CE are about as high as when training starts on a network initialized to small random 

weights. 

 

Figures 4-6 give insight into the behavior of the network during the learning process 

using four error functions.  The surface plot shows a histogram of the values output by 

the network output nodes on the training patterns every epoch (Figure 4) and every tenth 

training epoch (Figures 5 and 6).  Figures 4, 5a and 5b show learning minimizing SSE, 

and Figures 6a and 6b show behavior during CB1 training.  The results shown here are 

for the bcw data set, but such behavior is generally representative of all data sets tested. 

 

In Figure 4, it can be seen that SSE training forces the network to output values 

approaching 0 and 1 in fewer than ten epochs.  It is noted that even after the first epoch, 

network outputs are already completely separate and distinct.  Using a dmax of 0.1 reduces 
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this tendency somewhat.  Observe the flattened peaks for positive patterns in Figure 5b 

that do not exist in 5a. 

 

CB training produces a starkly different behavior.  In Figure 6a, it can be observed that 

all patterns output around 0.5 during the entire training process.  In Figure 6b, 

incorporating a confidence margin of µ = 0.1 widens the spread of output values, causing 

the output clusters of the two classes to visibly split apart as training progresses. 
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 Figure 4.  Network output trace SSE optimization on bcw (first ten epochs). 

Weight saturation occurs after only a few training epochs. 
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Figure 5.  Network output trace during SSE optimization on bcw. 

Network weights become quickly saturated during training. 
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Figure 6. Network output trace during CB training on bcw. 

Network weights do not become saturated during training. 
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5.1   Empirical effects of an error margin 

Figure 7 depicts the results of training with CB1 on bcw with values for µ ranging from 0 

to 0.9.  Each value bar shown is the averaged classification accuracy with standard 

deviation using 10-fold stratified cross validation. 
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Figure 7.  10-fold CV results for CB training on bcw with µ. 

Small, non-zero values for µ typically demonstrate the best generalization. 

 

This shows that CB1 is fairly robust to the selection of µ.  Values for µ > 0 cause the 

decision surface to be more removed from proximal test patterns than when µ = 0 and 

have better generalization.  Values for µ closer to 0 show the most improvement and 

values closer to 1 cause CB1 to revert proportionally to the behavior of standard SSE 

minimization.  (Note that the accuracies shown for µ ~ 1.0 do not match the accuracy for 
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SSE training in Table 4 because the accuracies in Table 4 are based on roughly optimized 

parameters for each error function, and CB and standard training have different optimal 

learning parameters.) 

 

5.2   Effect of SSE on output values 

Following a training run on OCR training to minimize SSE, winning network outputs on 

the test set were distributed as shown on the logarithmic scale in Figure 8.  The network 

outputs were very close to 1.0 on the majority of the patterns.  Only 2-3% of the patterns 

lie close to where the decision surface is located (implicitly at 0.5).  The weights have 

grown in magnitude to the point that the dividing sigmoidal surface is very sharp. 
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Figure 8.  Network outputs on OCR test set after SSE minimization are typically close to 

1, indicative of large weights. 
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Figure 9.  Network outputs on OCR test set after CB1 training. 

Network weights are typically very small. 

 

 

5.3 Effect of CB training on output values 

CB1 training produces a final output distribution quite unlike that seen in Figure 8.  

When networks only perform weight updates to prevent misclassification, instead of 

pushing the pattern outputs to one end of the output range or the other, the vast majority 

remains spread out just slightly above the decision boundary (see Figure 9).  Pattern 

output distribution is roughly gaussian, reflecting an actual gaussian data distribution 

(i.e., gaussian noise in the OCR input features).  There is a larger output variance than 

appears from SSE optimization but with only a fraction of the classification error.  This 

suggests that the decision surface is much smoother and that network weights are not 
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saturated.  Misclassified patterns usually have outputs below 0.5 and are lower than the 

output for correctly classified patterns in the majority of cases. 

 

5.4 Network complexity 

At first, it seems counter-intuitive that networks outputting only around 0.5 will 

generalize so well.  Ordinarily, training networks together allows a classifier to become 

more complex, prone to overfitting.  However, it has been shown that the number of 

nodes in a network is not as influential as the magnitude of the weights (Bartlett, 1998).  

The topology, rather, serves more as a mechanism that lends itself to solving of certain 

problems, while the weights represent how tightly the network has fit itself to the 

(admittedly incomplete) training data distribution.  Network complexity is further defined 

(Wang, Venkatesh, & Judd, 1994) as the number of parameters and the capacity to which 

they are used in learning (i.e., their magnitude).  The authors show how network 

complexity is a generalization of Akaike’s Information Criterion, which reveals 

 

The generalization error of a network is affected not only by the number of 

parameters but also by the degree to which each parameter is actually 

used in the learning process. 

 

That is, it is best to make minimal use of the capacity of the network for encoding the 

information provided by the learning patterns (Wang, Venkatesh, & Judd, 1994).  In light 

of this, it is understandable why training (overly complex) networks using early stopping, 

weight decay or CB training, which allow networks to converge with smaller weights 
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than normal, perform well.  Although a network may have more parameters than strictly 

necessary, CB1 avoids superfluous weight updates when patterns are correctly classified.  

This results in lower network complexity.  Hence, the possibility of overfitting is reduced 

in the training process. 

 

The networks used in the OCR experiments (1 for each class) had 64 inputs, 32 hidden 

nodes and 1 output node, with 2080 weight parameters (plus 33 bias weights).  The rows 

of Table 5 list the average magnitude of the weights in a network initialized with uniform 

random weights in the range [-0.3,0.3], after standard training, and after CB training, 

respectively.  The columns denote the average magnitude of the bias weight on the 

hidden nodes, bias on the output node, average weight from input to hidden node, and 

from hidden to output node, respectively.  The lowest weight magnitudes are bolded.  

The CB network has weights that are roughly two to four times larger than the initial 

random values, while SSE and CE training produce weights from ten to twenty times 

larger.  The CB network is a simpler solution than the networks produced by 

backpropagation training optimizing SSE or CE. 

 

Table 5. Average final network weight magnitudes. 

Method Hidden 
Bias 

Output 
Bias 

Hidden 
Weight 

Output 
Weight 

Initial 0.16 0.15 0.15 0.15 
SSE 2.21 4.66 1.27 6.25 
CE 2.56 4.95 1.43 4.16 
CB1 0.56 0.02 0.31 0.74 
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5.5 Multi-task learning with CB 

Common training methods for learning multiple tasks involve training multiple networks 

separately, one for each task.  However, learning the subparts of a complex problem 

separately may not be a good idea.  Independent training of domain-specific experts is 

only marginally beneficial to the system as a whole.  Multi-task learning (MTL), learning 

multiple problems simultaneously with a single multiple-output network, is described by 

Caruana (1993; 1995; 1996; 1997).  Caruana shows how learning multiple tasks in 

conjunction helps to avoid local minima and improve generalization.  MTL performs 

better (learning tasks simultaneously) than learning tasks separately (Caruana, 1993). 

 

There are several reasons why MTL improves on single-task learning (STL).  Using 

single-output networks to learn each class in the problem ensures each class is learned 

separately.  Learning classes separately might allow easier analysis of solutions, whereas 

deciphering the meaning of network weights in a multi-output network is very difficult.  

However, there are advantages to CB training using a single multi-output network over 

separate single-output networks.  Training a single network takes advantage of the 

benefits of MTL.  Where problem hypotheses overlap, a single network can “reuse” 

nodes by taking advantage of redundant features.  This produces a more compact solution 

than having to relearn redundant features in separate networks.  In experiments on the 

OCR set 47 networks were trained.  Each network had a 64x32x1 architecture, (plus bias) 

yielding 2113 weight parameters in each network.  In all, the model contains 2113 x 47 = 

99,311 weights, whereas the best single network has a 64x256x47 topology (plus bias).  

This equals 16640 + 12079 = 28,719 weights, a reduction in size of nearly three-and-a-
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half times.  The practical implications of this are that not only is memory conserved, but 

classification speed is increased as well. 

 

Caruana (1995) states one of the disadvantages of MTL is that, since tasks are learned at 

different times during training, it is difficult to know when to stop training.  When 

training is stopped early, some tasks might not have been learned and generalization is 

often impaired as a result.  Caruana’s solution is to train the network until all tasks appear 

to be overfitting, or to take a separate snapshot of the network for each class, at the point 

where its validation accuracy is highest.  However, taking several snapshots makes the 

solution much more unwieldy, and although the snapshot is taken at the point where 

accuracy is highest, there is no guarantee that overfitting has not already occurred in 

some part of the space for that class. 

 

CB training solves both problems by naturally stopping training on tasks as they are 

learned, both within classes and among them.  This helps in two ways: the solution can be 

kept small (using a single network), and overfitting is discouraged on two levels, both 

external to learning a class (overfitting a class because other classes have yet to be 

learned sufficiently) and internal to it (overfitting on localized regions of a class because 

other regions have yet to be learned). 

 

CB training of multiple networks goes a step beyond MTL.  Note that in Section 4.3.1, 

the best OCR test accuracy was obtained using multiple networks.  It appears their 

increased computational ability (more network parameters) over the monolithic model 
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enables them to be used as needed to find a better solution than with a single multi-output 

network, while CB training discourages abuse of the increased potential of the system to 

overfit.  In addition to having specialized networks learning individual tasks at the same 

time, CB explicitly shares relevant information among the networks, in the form of 

output values, during training to coordinate their learning process. 

 

5.6 Computational Cost 

CB1 requires an O(n) search through the n network outputs to determine the highest 

target and competitor values.  However, this additional overhead to the learning 

algorithm is negligible compared to the computation requirements of O(ih) for feed-

forwarding a pattern vector and O(ihn) for backpropagation, where i is the number of 

inputs and h is the number of hidden nodes.  In fact, CB1 saves O(ihn) time by omitting 

the error backpropagation step over correctly classified patterns.  The number of epochs 

required to converge is similar for CB1 and conventional backpropagation training. 

 

6 Considerations in Neural Network Training using CB1 

 

In this section, several issues are enumerated that must be considered when designing an 

effective neural network backpropagation learner.  How each of these issues is dealt with, 

to some extent, has a significant effect on generalization.  How CB training deals with 

these issues is discussed. 
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6.1 Network Complexity 

If it is possible to reduce network complexity without reducing training error, then it is 

expected that generalization accuracy will improve.  Network complexity is defined 

(Wang, Venkatesh, & Judd, 1994) as the number of parameters and the capacity to which 

they are used in learning (i.e., their magnitude).  A network with a few large weights may 

effectively be more complex than a network with a greater number of small weights.  

Hence, complexity can be reduced not only through pruning parameters, but also by 

reducing their values.  A learning algorithm that aims at preserving small weights during 

training can aid in improving generalization.  One example of this is performing 

regularization such as weight decay (Werbos, 1988), which serves to weaken overly 

strong or saturated connections and in effect remove unused network connections.  

However, weight decay serves more as a recovery technique to repair the damage caused 

by minimizing the error function as weights tend toward saturation, rather than providing 

a heuristic that specifically aims at small-weight solutions.  CB1 actively attempts to find 

good solutions with weights remaining as small as possible to avoid saturation. 

 

6.2 Early Stopping 

Early stopping strategies (Wang, Venkatesh, & Judd, 1994) commonly utilize network 

architectures that have the potential of being overly complex.  Larger network 

architectures are likely to converge to a lower training error, but tend to produce higher 

error on test patterns.  In order to avoid this, early stopping strategies try to determine 

when the problem has been learned sufficiently well, but not yet overfit (Caruana, 2000). 
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(Wang, Venkatesh, & Judd, 1994) shows that stopping learning before the global error 

minimum has the effect of network size selection.  This can be accomplished through a 

number of methods, such as considering the accuracy of a validation, or holdout, set, and 

stopping training when the performance on the holdout set begins to degrade (Andersen 

& Martinez, 2001). 

 

CB training performs an “online” form of early stopping.  Rather than stopping training 

completely when it is detected that the training set is being overfit, CB1 selectively omits 

training on individual patterns when backpropagating an error signal would not increase 

accuracy further. 

 

6.3 Model Complexity 

It is often believed that networks with too many degrees of freedom generalize poorly.  

This line of reasoning is based on two observations: (1) that a sufficiently large network 

is able to memorize the training data if training continues long enough, and (2) even with 

early stopping approaches, it is not apparent whether some form of overfit has occurred.  

By reducing the learning capacity of such a network, it is thereby forced to generalize as 

it no longer has the capability to memorize the training data. 

 

Caruana (1997, 2000) points out that in order to perform a proper theoretical analysis of 

network capacity and generalization, the search heuristic must also be taken into account.  

Gradient descent search heuristics do not give all hypotheses an equal opportunity.  The 

inductive bias of standard backpropagation is to start with a simple hypothesis (through 
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usually small, random weights) and make the hypothesis more complex (by increasing 

the magnitude of the weights) until the network sufficiently learns the problem. 

 

Thus, backpropagation is biased toward hypotheses with small weights, examining 

solutions with larger weights only as dictated by necessity.  Excess network capacity does 

not necessarily hinder generalization, as learning stops as soon as possible.  This stopping 

point is dictated in part by the objective function.  During the first part of training, large 

networks behave like small networks.  If they do not come to a satisfactory solution, they 

begin to perform less like small networks and more like mid-size networks, and so on.  If 

a large network is too big, early stopping procedures will detect when generalization 

begins to degrade and halt training.  At this point, the larger network performs similar to 

some smaller network.  This means that generalization can be less sensitive to excess 

network capacity, and that using a network that is too small can hurt generalization more 

than using networks that are too large (Caruana, 1997). 

 

The ability to perform online per-pattern stopping, combinable with standard early 

stopping techniques, enables CB training to be more robust in its management of 

excessively large networks.  In empirical tests for optimal network sizes in the 

experiments above, CB1 proved to be more robust to overly large numbers of hidden 

nodes than SSE and CE optimization.2 

 

 

 
                                                 
2 See Chapter 6, Section 4.4 for published results of an expanded test. 
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6.4 Overfitting 

In taking all of the above issues into account, overfit is typically considered to be a global 

phenomenon.  However, the degree of overfit can vary significantly throughout the input 

space.  (Caruana, Lawrence and Giles, 2000) show that overly complex MLP models can 

improve the approximation in regions of underfitting, while not significantly overfitting 

in other regions.  However, their discussion is limited to function approximation tasks 

and not classification problems, which are affected in a different way by bias-variance 

tradeoffs (Friedman, 1997).  CB training seeks to minimize overfit not only globally but 

also locally by not training on patterns that are already correctly classified. 

 

A network’s bias and variance, as defined in (Geman & Bienenstock, 1992), can be 

intuitively characterized as the network’s test set generalization and its sensitivity to 

training data, respectively.  There exists an inherent tradeoff between bias and variance, 

namely 

 

The best generalization requires a compromise between the conflicting 

requirements of small variance and small bias.  It is a tradeoff between 

fitting the training data too closely (high variance) and taking no notice of 

it at all (high bias) (Sharkey, 1996). 

 

Bias is the extent to which the network’s output varies from the target function (the 

error), while variance is the sensitivity to the training data sampled in affecting 
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generalization (the variance of the constructed hypothesis from the optimal Bayes 

hypothesis).  An ideal function approximation network has low bias and low variance. 

 

Friedman illustrates that low SSE bias is not important for classification, and one can 

reduce classification error toward the minimal (Bayes) value by reducing variance alone 

(Friedman, 1997).  One way to reduce variance is by constructing a smoother decision 

surface.  CB1 accomplishes this by discouraging patterns from affecting the shape and 

location of the decision surface more than is required for correct classification.  SSE bias 

is acceptably increased, as CB training is used for classification tasks, not function 

approximation. 

 

6.5 Coordinating objective function 

CB training provides coordination among multiple single-output networks, or among 

output nodes in a multi-output network.  CB training illustrates the principle of satisficing 

(Simon, 1959), where an aspiration level is specified, such that once that level is met, the 

corresponding solution is deemed adequate.  CB training balances an output’s credibility, 

or the exactness with which it can produce ideal target values for its class (e.g., reducing 

SSE to zero), against its rejectability, or the risk of overfitting by doing so.  A trade-off is 

created between exactness in individual class outputs and the classification accuracy of 

the system.  An output node can satisfactorily perform less “ideally” with the 

understanding that the effectiveness of the entire system can be improved as a result.  In 

relaxing the constraint of optimal credibility, resultant rejectability is reduced. 
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7 Future Work 

 

There are several directions that future research on CB training will take.  CB training 

variants will be considered for batch and mini-batch learning.  The effect of modifying 

the error margin, � , in time and in space will be considered.  Dynamically updating the 

value of the error margin as training progresses is a straightforward extension to be 

evaluated.  Softprop, a learning approach combining CB1 and SSE optimization during 

training by means of the error margin, has shown improvement over CB1 in a 

preliminary study (Rimer & Martinez, 2004) and a thorough analysis will be presented in 

future work.  Using a value for the error margin local to each training instance and 

intelligently updating these values as training progresses also shows promise.  Also, it has 

been observed that classification errors between SSE and CB trained networks are highly 

uncorrelated.  Ensembles combining SSE and CB trained networks will be analyzed with 

the expectation that this will further reduce test error. 

 

8 Conclusion 

 

CB training with the CB1 error function produces less overfit in gradient descent 

backpropagation training than optimizing SSE and CE.  It produces simpler hypotheses 

than SSE and CE, increasing the probability of better generalization. Its robustness and 

superior generalization over SSE and CE backpropagation has been demonstrated on 

several applications.   On UCI MLR problems, there was an average increase in accuracy 
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from 90.7% for optimized SSE networks to 92.1% for CB training performing 10-fold 

stratified cross-validation.  Similarly, there was an increase in test accuracy from 97.86% 

to 99.11% on a very large OCR data set. 
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Abstract. Multi-layer backpropagation, like most learning algorithms that can create 

complex decision surfaces, is prone to overfitting.  We present a novel approach, called 

lazy training, for reducing the overfit in multiple-layer networks.  Lazy training 

consistently reduces generalization error of optimized neural networks by more than half 

on a large OCR dataset and on several real world problems from the UCI machine 

learning database repository.  Here, lazy training is also shown to be effective in a multi-

layered adaptive learning system, reducing the error of an optimized backpropagation 

network in a speech recognition system by 50.0% on the TIDIGITS corpus. 

 

1 Introduction 

 

Multi-layer feed-forward neural networks trained through backpropagation have received 

substantial attention as robust learning models for tasks including classification [17].  

Much research has gone into improving their ability to generalize beyond the training 

data.  Many factors play a role in their ability to learn, including network topology, 
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learning algorithm, and the nature of the problem being learned.  Overfitting the training 

data, caused through the use of an inappropriate objective function, is often detrimental to 

generalization.  In applications such as speech recognition where even a small amount of 

error can be unacceptable it is important to generalize as well as possible. 

 

This work introduces word training (WT), a novel technique for training speech 

recognition networks.  Word training, inspired by lazy training [15], implements an 

objective function that seeks to directly minimize word classification error while 

discouraging overfitting.  Lazy training performs successfully on a large OCR dataset and 

several problems selected from the UCI machine learning database repository, reducing 

their average generalization error over training of optimized networks by more than 60% 

using 10-fold cross-validation [17].  An extensively optimized, state-of-the-art 

backpropagation network achieves word recognition error of 0.12% on the TIDIGITS 

speech recognition corpus [11].  Word training performs markedly better than optimized 

standard backpropagation training, decreasing test set error by half, from 0.12% to 

0.06%. 

 

An overview of related work and a discussion of objective functions are provided in 

Section 2.  The lazy training and the word training algorithms are presented in Section 3.  

Experiments and results are given in Section 4.  Analysis and discussion are in Section 5.  

Conclusions and future work are presented in Section 6. 
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2 Related work 

 

The speech recognition problem is very complex and has received much attention in 

machine learning literature.  Many learning models have been developed to cope with the 

difficulty of this problem.  Often, neural networks have been utilized to provide a 

solution.  However, neural networks are prone to overfit to the training data, which is 

detrimental to robust generalization.  Hidden Markov models (HMMs) traditionally 

perform as well or better than neural networks at speech recognition [14].  Word training 

achieves results comparable to HMMs. 

 

2.1 Critique of current training techniques 

To generalize well, a learner must have a proper objective function.  Most learning 

techniques incorporate an objective function of minimizing sum-squared-error (SSE).  

The validity of using SSE as an objective function to minimize error relies on the 

assumption that sample outputs are offset by inherent gaussian noise, being normally 

distributed about a cluster mean.  For learning function approximation of an arbitrary 

signal, this presumption often holds.  However, this assumption is invalid for 

classification problems, where the target vectors are class codings (i.e., arbitrary nominal 

or boolean values representing designated classes). 

 

Cross-entropy (CE) assumes idealized class outputs (i.e., target values of zero or one for 

a sigmoid activation) [13] and is therefore more appropriate to classification problems.  

However, error values using SSE and cross-entropy have been shown [9] to be 
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inconsistent with ultimate sample classification accuracy.  That is, minimizing CE or SSE 

is not necessarily correlated to high recognition rates.  Numerous experiments in the 

literature provide examples of networks that achieve little error on the training set but fail 

to achieve the best possible accuracy on test data [2, 18].  This is due to a variety of 

reasons, such as overfitting the data or having an incomplete representation of the data 

distribution in the training set.  There is an inherent tradeoff between fitting the (limited) 

data sample perfectly and generalizing accurately over the entire population. 

 

2.2 Shortcomings of search methodologies 

More fundamentally, the above objective functions provide mechanisms that do not 

reflect the true goal of classification learning, which is to achieve high recognition rates 

on unseen data.  In [9], a monotonic objective function, the classification figure-of-merit 

(CFM), is introduced for which minimizing error remains consistent with increasing 

classification accuracy.  Networks that use the CFM as their criterion function in 

phoneme recognition are introduced in [9] and further considered in [5].  They are, 

however, also susceptible to overfitting.  The question of how to prevent overfitting is a 

subtle one.  When a network has many free parameters, learning is fast and also local 

minima can often be avoided.  On the other hand, networks with few free parameters tend 

to exhibit better generalization performance.  Determining the appropriate size network 

remains an open problem [8]. 

 

The problem of overfitting has received much attention in the literature.  Methods of 

addressing this problem include using a holdout set to stop training early [20], cross-
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validation [2], node pruning [7, 8], and weight decay [21], among others.  These 

techniques approach optimal solutions given the bias of standard backpropagation 

learning but do not consider possible enhancements to the bias itself.  Node pruning seeks 

to improve accuracy by simplifying network topology, rather than alleviating the 

problems common to larger topologies, for example.  Methods for overcoming problems 

in the inductive bias inherent to training with backpropagation generally involve forming 

network ensembles.  Ensemble techniques, such as bagging and boosting [12], or 

wagging [3], are more robust than single networks when the errors among the networks 

are not positively correlated. 

 

There is evidence that the size of the weights in a network plays a more important role to 

generalization than the number of nodes [4].  A simple method of reducing overfitting is 

to provide a maximum error tolerance threshold, dmax, which is the smallest absolute 

output error to be backpropagated.  In other words, no weight update occurs for a given 

dmax, target value, tk, and network output, ok, if the absolute error | tk – ok | < dmax.  This 

threshold is arbitrarily chosen to represent a point at which a sample has been sufficiently 

approximated.  With an error threshold, the network is permitted to converge with much 

smaller weights [19]. 

 

3 Word training method 

 

This work addresses overfitting exhibited by previous backpropagation solutions by 

applying lazy training, a conservative form of training, to the learning process (see 



www.manaraa.com

Chapter 3. Improving Speech Recognition Learning through Lazy Training 

 63 

Section 3.3).  Similar to CFM, it requires that a reduction in error correlate to increasing 

accuracy.  However, CFM does not prevent weight saturation, which is often detrimental 

to accuracy [4].  Lazy training only backpropagates an error signal from output nodes that 

endanger classification accuracy.  This approach allows the model to approach a solution 

more conservatively and discourages overfitting. 

 

3.1 Phoneme training algorithm 

Speech recognition is a complex problem, and a standard approach involves simplifying 

the problem by breaking it up into smaller, simpler ones.  Word recognition is broken 

into the simpler problem of phoneme recognition.  The signal is divided into small time 

slices called frames and features derived from each frame are input into the recognizer 

(see Figure 1).  The recognizer then outputs the probability of each phoneme being 

uttered during that frame.  Often, several contiguous frames are considered 

simultaneously, as in the multi-layer time-delay neural network in [10].  Phonemes are 

identified and combined through a proper linguistic model to derive words.  However, 

derived features of a speech signal are often noisy and speaker dependent.  Hence, it is 

difficult to achieve a satisfactorily high phoneme recognition rate at each frame and 

produce a reasonable solution. 

 

Therefore, a decoder is stacked onto the phoneme recognizer to provide a more holistic 

solution.  The decoder receives the outputs of the phoneme recognizer and combines the 

outputs over time to make a more educated guess as to what word or phrase has been 

spoken.  Pairings of adjacent possible phonemes are validated or prohibited according to 
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the linguistic model, and the overall most-likely sequence of phonemes is output as the 

response.  Additional elements such as a lexicon can be incorporated into the decoder to 

constrain possible responses to produce more intelligent solutions.  The decoder can be 

made even more sophisticated to combine probable words together into entire utterances 

according to a language model. 

 

 
Figure 1.  Word training system with neural network and decoder. 

 
 

Phoneme training involves presenting a series of utterances to the network.  Each 

utterance is divided into temporal frames and features derived from the signal that are 

input into the network.  Each frame is labeled with the phoneme being spoken during that 
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time.  The network is often trained using backpropagation with a cross-entropy objective 

function. 

 

3.2 Lazy training paradigm 

Due to the reasons stated in Section 2, a neural network classifier often overfits the 

training data.  The tendency to overfit is further aggravated because labeled data points in 

this problem space are sparse.  The problem is compounded since phonemes blend 

together, and it is problematic to label minute time slices accurately.  It is therefore 

desirable to incorporate a recognizer that will overfit as little as possible in order to 

produce the highest possible generalization accuracy. 

 

Overfitting a neural network is often equated with saturating the weights.  It follows that 

overfit is reduced by letting the weights be as small as possible in the solution.  This ideal 

can be approached through the following method. 

 

For each frame considered by the recognizer during training, only those outputs that are 

credited with classification errors are updated through backpropagation. The result is 

training without idealized target outputs of 0 and 1, providing a learning mechanism that 

is reminiscent of constraint satisfaction and reinforcement learning, where the network 

outputs learn to interact with their (changing) environment (the behavior of the decoder 

based on the values of the output nodes).  As this forces networks to learn only when 

explicit evidence is presented that their state is a detriment to classification accuracy, we 

have dubbed this technique lazy training (not to be confused with lazy learning 
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approaches [1]).  Backpropagation training often uses an objective function that tends to a 

saturation of the weights.  That is, it tends to encourage larger weights in an attempt to 

output a value approaching the limits of 1 or 0.  The ramifications of this are discussed 

further in Section 5.  Lazy training is biased toward simpler solutions, meaning that 

smaller weights (even approaching zero) can be used to provide an acceptable solution. 

 

Two or more output nodes can in effect collaborate together to decide how learning is to 

proceed at any given point.  More specifically, interaction among outputs allows a 

dynamic error threshold to be implemented.  That is, when one output presents a 

sufficient solution in an area of the problem space, other outputs do not need to work at 

redundantly modeling the same local data.  Consequently, they are able to specialize and 

break a complex problem up into smaller, simpler ones.  This provides for a more 

conservative form of training that converges with smaller network weights, hence with 

less overfitting and greater generalization accuracy. 

 

The lazy training methodology has been successfully utilized to significantly reduce error 

on OCR data and on several problems from the UCI repository of machine learning 

databases [6,15].  We implement it here for speech recognition to show further 

advantages of this training style.  In past experiments, lazy training was performed on N 

separate single-output networks (one for each class in the problem).  Here we show how 

it can successfully be used on a single N-output network.  A single network provides a 

more compact, simpler, faster solution than many separate networks in learning a 

problem with several output classes. 
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Also, we illustrate that lazy training learns effectively when there is a level of indirection 

necessarily involved in arriving at a solution.  In this case, while the network learns to 

output phoneme confidences, these confidences do not provide the actual solution, but are 

used by the phoneme decoder to derive the words spoken.  High phoneme accuracy is 

therefore not necessarily the goal of training, but instead high word recognition rates.  

Word training (WT) is the name we give to training with an objective of directly 

increasing word recognition accuracy (possibly at the expense of phoneme accuracy).  

The method for deducing the network phoneme error from word error is presented in the 

following sub-section. 

 

3.3 Word training algorithm 

In word training the network decoder is involved in the training process.  The decoder 

gathers the network outputs on all the frames of an utterance.  When the decoder outputs 

a recognized word sequence, the output is compared against the target word sequence.  If 

the output utterance matches the target, no error signal is propagated through the network 

at all (see Fig. 1, Error Signal).  The network performs adequately within the system, and 

refraining from updating the weights discourages overfitting.  When a discrepancy 

between the output and target exists, then the network weights are updated only on those 

time frames where the word errors occur. 

 

Let N be the number of network output nodes (distinct class labels).  Let ok be the output 

value of the kth output node of the network (0 ≤ o ≤ 1, 1 ≤ k ≤ N).  Let T designate the 
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target output class for a given frame and ck signify the class label of the kth output node.  

For target output nodes, ck = T, and for non-target output nodes, ck ≠ T.  Non-target 

output nodes are called competitors.  Let oTmax denote the highest-outputting target output 

node.  Let oCmax denote the value of the highest-outputting competitor.  The error, εk, 

back-propagated from the kth output node of the network is defined as 

 

εk ≡ 
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where τU and τL are upper and lower target values such that 0 ≤ τL < ok < τU ≤ 1.  Thus, 

the target output generates an error signal only if there is some competitor with an equal 

or higher value than oTmax, signaling a potential misclassification.  Non-target outputs 

generate an error signal only if they have an output equal to or higher than oTmax, 

indicating they are responsible for the misclassification. 

 

The rate of convergence is partly dependent on the values used for τU and τL.  Note that 

changing either τ is effectually equivalent to altering the learning rate.  A τ closer to the 

current output value ok implies a smaller error signal and will result in slower, but 

steadier convergence that more closely approximates the true error gradient than values 

near 0 or 1. 

 

Word training of a network proceeds at a different pace than with standard 

backpropagation phoneme training.  Training only the nodes that directly contribute to 

classification error of a word allows the model to relax more gradually into a solution, 
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learning only as much as it needs to and thereby discouraging overfitting.  This approach 

is reminiscent of training with an error threshold; however whereas a fixed error 

threshold causes training to stop at a pre-specified point, word training dynamically halts 

at the first possible point for a given frame at a given point in time.  Weights are updated 

only through necessity.  Without the decoder, a phoneme can be considered “learned” 

with any output value, providing competitors output lower values.  Using a decoder, even 

more flexibility is possible, since the target output on a phoneme can be lower than its 

competitors and a word still be correctly identified. 

 

Additionally, overfitting is minimized in a word trained network because outliers (noisy 

frames) have minimal detrimental impact to the decision surface’s accuracy.  This is 

because the target output is only required to output a value that is negligibly higher than 

the output representing the neighboring class, as illustrated in Figure 2b.  This is in 

contrast to classical gradient descent training, where hard target values of 0 and 1 are 

required (translating to pushing the decision surface as far away as possible) even for 

outliers as illustrated in Figure 2a.  Hence, in testing, samples close to the outlier 

belonging to the competing class (represented by the question mark) have a much better 

chance of being correctly classified. 

 

 

(a) (b) 
 

Figure 2: Overfit decision surface (a) and lazy-trained surface (b). 
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3.4 Enlarging the margin 

When lazy training, it is common for the highest outputting node in the network to output 

a value only slightly higher than the second-highest-firing node (see Figure 3).  This is 

true for correctly classified samples (above 0 in Figure 3), and also for incorrect ones 

(below 0).  This means that most training samples remain physically close to the decision 

surface throughout training.  An error margin, µ, can be introduced during the training 

process that serves as a confidence buffer between the outputs of target and competitor 

nodes.  Under the sigmoid function, the error margin is bounded by [–1, 1].  For no error 

signal to be backpropagated from the target output, an error margin requires that oCmax < 

oTmax - µ.  Conversely, for a competing node k with output ok, the inequality ok < oTmax - µ 

must be satisfied for no error signal to be backpropagated from k. 

 

During the training process, µ can be increased gradually and might even be negative to 

begin with, not expressly requiring correct classification at first.  This gives the networks 

time to configure their parameters in an even more uninhibited fashion. Then µ is 

increased to an interval sufficient to account for the variance that appears in the test data, 

allowing for robust generalization.  The value of µ can also be decreased, and remain 

negative as training is concluded to account for noisy outliers (see Section 5.1). 

 

At the extreme value of µ equal to 1, lazy training becomes standard SSE training, with 

target values of 1.0 and 0.0 required for all positive and negative samples, respectively. 
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Figure 3: Network output margin of error after lazy training. 
 

 

4 Experiments 

 

The performance of phoneme versus word training models has been evaluated on a subset 

of the TIDIGITS data corpus consisting of over 17,000 utterances and sampled at 11 kHz, 

containing 50,000 spoken digits, partitioned into roughly 15,000 training samples, 1,000 

validation samples and 1,000 test samples.  Each sample is partitioned into 10 ms frames.  

The features generated for input to the network are standard mel-cepstral coefficients and 

their derivatives. 

 

4.1 Parameters 

We compared fully connected feed-forward network trained through on-line 

backpropagation maximizing cross-entropy on single frames against word-trained 

networks trained on utterances.  In the experiments presented, networks contained a 
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single hidden layer comprised of 50, 100, or 200 hidden nodes.  Weights were initialized 

to small random values.  The same initial weights were used for each training method.  

The learning rate began at 0.05 and a harmonic decay frequency of 5 epochs was used.  

In these tests a τU of 1 and τL of 0 were used for faster lazy training, and µ was 0.  

Training was halted after 150 epochs, many epochs after training error ceased to 

decrease. 

 

The backpropagation network used is state-of-the-art.  Its topology, objective function 

and learning parameters were optimized through extensive experimentation over a period 

of several years. 

 

4.2 Results 

Table 1 displays the test results of standard CE back-propagation training (BP) versus 

word training (WT).  Accuracies are shown in percent.  Highest column values are shown 

in bold, with the highest value for the other learning technique italicized.  Note that high 

word accuracy is our prime goal.  High sentence accuracy is a desired consequence, and 

phoneme accuracy is ultimately irrelevant. 

Table 1. Results on subset of TIDIGITS data corpus. 

Method, 
Hidden 
Nodes 

Phoneme Base 
phoneme 

Word Sentence 

BP 200 79.33 91.93 99.88 99.60 
BP 100 74.58 89.48 99.73 99.10 
BP 50 66.40 84.66 99.71 99.00 
WT 200 51.50 76.04 99.94 99.80 
WT 100 47.96 74.03 99.82 99.40 
WT 50 46.23 72.05 99.79 99.30 
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5 Analysis and discussion 

 

Table 1 shows that networks generated through word training have the capability of 

cutting word error in half from 0.12% for standard phoneme backpropagation training to 

0.06% for word training.  These tests show that, although word training experienced 

much lower phoneme accuracy, word accuracy was increased and the amount of overfit 

was reduced (see Section 5.3).  The highest accuracies were achieved with a 200-node 

hidden layer.  Larger networks show no further improvement.  Interestingly, as smaller 

hidden layers are used, word and phoneme accuracy degrades more gracefully for word 

training than for CE training.  When the training process concentrates directly on word 

accuracy instead of on learning phonemes, not directly responsible for word accuracy, 

more network parameters are free to learn a better solution. 

 

5.1 Lazy training analysis 

When networks are lazy-trained, instead of pushing the sample outputs to one end of the 

output range or the other, the vast majority remains spread out just slightly above the 

decision boundary.  Output distribution is roughly gaussian, reflecting an actual gaussian 

data distribution, with a larger variance than appears from standard backpropagation, but 

only a fraction of the classification error.  This suggests that the decision surface is much 

smoother and that network weights are not saturated. 

 

Training set accuracy is largely preserved on the test set.  Since the outputs learn 

together, their solutions are highly correlated and their solution transfers well to unseen 
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data.  Error is 50.0% less than with phoneme-trained networks, presenting a strong case 

for lazy training on complex data sets where backpropagation networks tend to overfit. 

 

Lazy training also assists in the case of noisy data and inaccurate or uncertain phoneme 

labeling.  In this case, the output representing the more accurate phoneme can fire 

roughly equal to the falsely labeled phoneme, rather than forcing it all the way down at 0.  

Even though the correct phoneme does not fire the highest value among the outputs, it 

fires nearly that high, enabling the decoder to more easily produce the correct answer. 

 

5.2 Network complexity 

The network outputs the majority of values at about 0.5.  At first, it seems counter-

intuitive that networks outputting only around 0.5 will generalize so well.  Ordinarily, 

training networks together allows a classifier to become more complex, prone to 

overfitting.  According to Occam’s razor, adding parameters to a network, beyond the 

smallest correct solution for a given problem, can be a detriment to the generalization 

ability of the network.  This is similar to the claim that a network with higher learning 

capacity tends to “memorize” noise in the data, which is an undesirable trait. 

 

Recently, however, it has been illustrated how the number of nodes in a network is not as 

influential as the magnitude of the weights [4].  The topology, rather, serves more as a 

mechanism that lends itself to solving of certain problems, while the weights represent 

how tightly the network has fit itself to the (admittedly incomplete) training data 

distribution.  Network complexity is further defined in [20] as the number of parameters 
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and the capacity to which they are used in learning (i.e., their magnitude).  In light of 

this, it is understandable why complex networks and lazy training, which allows networks 

to have small weights, perform so well together.  Although the WT network has a high 

number of parameters, lazy training prevents further weight updates once frames are 

correctly classified and results in low complexity.  Hence, the possibility of overfitting is 

reduced in the training process. 

 

The networks used in our experiments had 130 inputs, 50, 100, or 200 hidden nodes and 

199 output nodes, with 16,450, 32,900, and 65,800 weight parameters, respectively.  The 

rows of Table 2 list the average magnitude of the weights in networks initialized with 

small random weights, during phoneme training, and during word training, respectively.  

The particular values shown are taken following the epoch with the highest word 

accuracy on the holdout set.  The columns denote the average weight from input to 

hidden nodes, and from hidden to output nodes, respectively.  The word-trained network 

has weights that are twice as large as the initial random values, while standard training 

produces weights four times larger.  The lazy-trained network is a simpler solution than 

the network produced by standard backpropagation training. 

 
Table 2. Average network weights. 

 
Method Hidden 

Weights 
Output 
Weights 

Initial .132 .150 
Standard .491 .567 
Lazy .280 .256 
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6 Conclusion and future work 

 

Word training reduces overfitting in gradient descent backpropagation training, 

increasing the probability of discovering better solutions. Its advantages in word 

recognition over standard backpropagation phoneme training have been demonstrated in 

a speech recognition system.  A word-trained network reduces word recognition error by 

half over an optimized backpropagation network on the TIDIGITS corpus, a large real 

world application. 

 

For the word training nets presented, the learning parameters of the optimized 

backpropagation network were used.  No attempt was made to optimize them for lazy 

training.  Since standard backpropagation and lazy training vary significantly in their 

search technique, it would be expected that different parameter values would perform 

optimally with each objective function.  Different settings on parameters such as τU, τL, 

and µ will be tested to further improve generalization accuracy.  Word training will be 

applied to other problems that are broken into smaller pieces and then merged together, 

such as text recognition, using networks for OCR. 
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Abstract.  Multi-layer backpropagation, like many learning algorithms that can create 

complex decision surfaces, is prone to overfitting.  Softprop is a novel learning approach 

presented here that is reminiscent of the softmax explore-exploit Q-learning search 

heuristic.  It fits the problem while delaying settling into error minima to achieve better 

generalization and more robust learning.  This is accomplished by blending standard SSE 

optimization with lazy training, a new objective function well suited to learning 

classification tasks, to form a more stable learning model.  Over several machine learning 

data sets, softprop reduces classification error by 17.1% and the variance in results by 

38.6% over standard SSE minimization. 

 

1 Introduction 

 

Multi-layer feed-forward neural networks trained through backpropagation have received 

substantial attention as robust learning models for classification tasks [15].  Much 

research has gone into improving their ability to generalize beyond the training data.  

Many factors play a role in their ability to learn, including network topology, learning 
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algorithm, and the nature of the problem at hand.  Overfitting the training data is often 

detrimental to generalization and can be caused through the use of an inappropriate 

objective function. 

 

Lazy training [12,13] is a new approach to neural network learning motivated by the 

desire to increase generalization in classification tasks.  Lazy training implements an 

objective function that seeks to directly minimize classification error while discouraging 

overfitting.  Lazy training is founded upon a satisficing philosophy [9] where the 

traditional goal of optimizing network output precision is relaxed to that of merely 

selecting hypotheses that produce rational (correct) decisions.  Lazy training has been 

shown to decrease overfitting and discourage weight saturation in complex learning tasks 

while improving generalization [13,14].  It has performed successfully on speech 

recognition tasks, a large OCR data set and several benchmark problems selected from 

the UCI Machine Learning Repository, reducing average generalization error over 

training of optimized standard backpropagation networks using 10-fold stratified cross-

validation. 

 

In this work a method for combining standard backpropagation learning and lazy training 

is presented that we call softprop.  It is named after the softmax exploration policy in Q-

learning [19], combining greedy exploitation and conservative exploration in an 

optimization search.  This exploration policy tends to be effective in complex problem 

spaces that have many local minima.  This technique is shown to achieve higher accuracy 

and more robust solutions than either standard backpropagation or lazy training alone. 
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A background discussion of traditional objective functions and the lazy training objective 

function is provided in Section 2.  The proposed softprop technique is presented in 

Section 3.  Experiments are detailed in Section 4.  Results and analysis are shown in 

Section 5.  Conclusions and future work are presented in Section 6. 

 

2 Motivation for Lazy Training 

 

To generalize well, a learner must use a proper objective function.  Many learning 

techniques incorporate an objective function minimizing sum-squared-error (SSE).  The 

validity of using SSE as an objective function to minimize error relies on the assumption 

that sample outputs are offset by inherent gaussian noise, being normally distributed 

about a cluster mean.  For function approximation of an arbitrary signal, this presumption 

often holds.  However, this assumption is invalid for classification problems where the 

target vectors are class codings (i.e., arbitrary nominal or boolean values representing 

designated classes). 

 

Error optimization using SSE as the measure has been shown [8] to be inconsistent with 

ultimate sample classification accuracy.  That is, minimizing SSE is not necessarily 

correlated to achieving high recognition rates.  In [8], a monotonic objective function, the 

classification figure-of-merit (CFM), is introduced for which minimizing error remains 

consistent with increasing classification accuracy.  Networks that use the CFM as their 

criterion function in phoneme recognition are introduced in [8] and further considered in 

[5].  They are, however, also susceptible to overfitting. 
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The question of how to prevent overfitting is a subtle one.  When a network has many 

free parameters local minima can often be avoided.  On the other hand, networks with 

few free parameters tend to exhibit better generalization performance.  Determining the 

appropriate size network remains an open problem [7]. 

 

The above objective functions provide mechanisms that do not directly reflect the 

ultimate goal of classification learning, i.e., to achieve high recognition rates on unseen 

data.  Numerous experiments in the literature provide examples of networks that achieve 

little error on the training set but fail to achieve high accuracy on test data [2, 16].  This is 

due to a variety of reasons, such as overfitting the data or having an incomplete 

representation of the data distribution in the training set.  There is an inherent tradeoff 

between fitting the (limited) data sample perfectly and generalizing accurately over the 

entire population. 

 

Methods of addressing overfit include using a holdout set for model selection [18], cross-

validation [2], node pruning [6, 7], and weight decay [20].  These techniques seek to 

compensate for the bias of standard backpropagation learning [11] in specific situations.  

For example, as overly large networks tend to overfit, node pruning seeks to improve 

accuracy by simplifying network topology.  Forming network ensembles can also reduce 

problems in the inductive bias inherent to gradient descent.  Ensemble techniques, such 

as bagging and boosting [10], or wagging [3], are more robust than single networks when 

the errors among the networks are not closely correlated. 
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There is evidence that the magnitude of the weights in a network plays a more important 

role to generalization than the number of nodes [4].  Optimizing SSE tends to a saturation 

of weights, often equated with overfitting.  It follows that overfit might be reduced by 

keeping the weights smaller.  Weight decay is a common technique to discourage weight 

saturation.  Another simple method of reducing overfit is to provide a maximum error 

tolerance threshold, dmax, which is the smallest absolute output error to be 

backpropagated.  In other words, for a given dmax, target value, tk, and network output, ok, 

no weight update occurs if the absolute error | tk – ok | < dmax.  This threshold is arbitrarily 

chosen to indicate the point at which a sample has been sufficiently approximated.  Using 

an error threshold, a network is permitted to converge with much smaller weights [17]. 

 

2.1 Lazy Training 

Retaining smaller weights can be accomplished more naturally through lazy training.  

Lazy training only backpropagates an error signal on misclassified patterns.  Previous 

work [12, 13] has shown how applying lazy training to classification problems can 

consistently improve generalization. 

 

For each pattern considered by the network during the training process, only output nodes 

credited with classification errors backpropagate an error signal.  As this forces a network 

to delay learning until explicit evidence is presented that its state is a detriment to 

classification accuracy, we have dubbed this technique lazy training (not to be confused 

with lazy learning approaches [1]).  Often, an objective function is used in 
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backpropagation training that tends to a saturation of the weights.  That is, it tends to 

encourage larger weights in an attempt to output values approaching the limits of 0 and 1.  

Lazy training does not depend on idealized target outputs of 0 and 1.  As such, it is biased 

toward simpler solutions, meaning that smaller weight magnitudes (even approaching 

zero) can provide a solution with high classification accuracy.  This approach allows the 

model to approach a solution more conservatively and discourages overfit. 

 

2.2 Lazy Training Heuristic 

The lazy training error function is as follows.  Let N be the number of network output 

nodes (distinct class labels).  Let ok be the output value of the kth output node of the 

network (0 ≤ o ≤ 1, 1 ≤ k ≤ N) for a given pattern.  Let T designate the target output class 

for that pattern and ck signify the class label of the kth output node.  For target output 

nodes, ck = T, and for non-target output nodes, ck ≠ T.  Non-target output nodes are called 

competitors.  Let oTmax denote the highest-outputting target output node.  Let o~Tmax 

denote the value of the highest-outputting competitor.  The error, εk, back-propagated 

from the kth output node of the network is defined as 

 

εk ≡ 








≥≠−
≥=−
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)( and  if
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.             (1) 

 

Thus, the target output backpropagates an error signal only if there is some competitor 

with an equal or higher value than it, signaling a misclassification.  Non-target outputs 

generate an error signal only if they have a value equal to or higher than oTmax, indicating 
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they are also responsible for the misclassification.  The error value is set to the difference 

in value between the target and competitor nodes. 

 

Lazy training of a network proceeds at a different pace than with standard SSE 

minimization.  Weights are updated only through necessity.  Hence, a pattern can be 

considered “learned” with any combination of output values, providing competitors 

output lower values than targets.  Training only nodes that directly contribute to 

classification error allows the model to relax more gradually into a solution and avoid 

premature weight saturation. 

 

The output nodes can in effect collaborate together to form correct decisions.  When the 

target output node presents a sufficient solution value in a local area of the problem space 

(i.e. its value is higher than for non-target nodes), competitor outputs do not need to work 

at redundantly modeling the same local data (i.e., approximate a zero output value).  

Consequently, they are able to specialize and break complex problems up into smaller, 

simpler ones.  Whereas a fixed error threshold causes training to stop when output values 

reach a pre-specified point (e.g. 0.1 and 0.9), lazy training implements a dynamic error 

threshold, halting training on a given pattern as soon as it is classified correctly.  Keeping 

weights smaller allows for training with less overfit and greater generalization accuracy. 

 

2.3 Adding an error margin to lazy answers 

When lazy training, it is common for the highest outputting node in the network to output 

a value only slightly higher than the second-highest-firing node (see Figure 1).  This is 
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true for correctly classified samples (to the right of 0 in Figure 1), and also for incorrect 

ones (to the left of 0).  This means that most training samples remain physically close to 

the decision surface throughout training.  An error margin, µ, is introduced during the 

training process to serve as a confidence buffer between the outputs of target and 

competitor nodes.  Using the sigmoid function, the error margin is bounded by [–1, 1].  

For no error signal to be backpropagated from the target output, an error margin requires 

that o~Tmax + µ < oTmax.  Conversely, for a competing node k with output ok, the inequality 

ok + µ < oTmax must be satisfied for no error signal to be backpropagated from k. 
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Figure 1.   Network output margin of error after lazy training. 

 

Requiring an error margin is important since the goal of learning in this instance is not 

simply to learn the training environment well but to be able to generalize.  This is 

especially important in the case of noisy problem data.  During the training process, µ can 

be increased gradually and might even be negative to begin with, not expressly requiring 
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correct classification at first.  This gives the network time to configure its parameters in a 

more uninhibited fashion. Then µ is increased to an interval sufficient to account for the 

variance that appears in the test data, allowing for robust generalization. 

 

At the extreme value of µ equal to 1, lazy training becomes standard SSE training, with 

output values of 1.0 and 0.0 required to satisfy the margin.  Since a margin of 1 can never 

be obtained without infinite weights, an error signal is always backpropagated on every 

pattern. 

 

3 Softprop Heuristic 

 

The softprop heuristic performs a novel explore-exploit search of the solution space for 

multi-layer neural networks.  Softprop exchanges the use of a single pure objective 

function with a mixture taking advantage of both lazy training and SSE minimization at 

appropriate times during the learning process.  The heuristic is as follows: 

 

For each epoch, let the lazy training error margin µ = t/T, where t ∈ {0, 1, 2, 

…} is the current epoch and T is the maximum number of epochs to train. 

 

Softprop causes a smooth shift from lazy training to SSE minimization as the search 

progresses.  The lazy exploration phase first steers the decision surface toward a general 

problem solution without saturating network weights prematurely.  Then, as learning 

tends toward SSE exploitation, the distance of the decision boundary from proximate 
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patterns is maximized.  The practical aspect of this approach is analogous to simulated 

annealing, where a Boltzmann stochastic update is used with an update probability 

“temperature” that is gradually reduced to allow the network to gradually settle into an 

error minimum. 

 

The complexity of softprop is equivalent to that of standard SSE optimization and lazy 

training and converges in comparatively as many epochs. 

 

4 Experiments 

 

Empirical results are presented in this section. 

 

4.1 Data sets 

Several well-known benchmark classification problems were selected from the UC Irvine 

Machine Learning Repository (UCI MLR).  The problems were selected so as to have a 

wide variety of characteristics (size, number of features, complexity, etc.) in order to 

demonstrate the robustness of the learning algorithms.  Results on each problem were 

averaged using 10-fold stratified cross-validation. 

 

4.2. Training parameters 

Experiments were performed comparing the SSE and lazy training objective functions 

against the proposed softprop heuristic.  Feed-forward multi-layer perceptron networks 

with a single, fully-connected hidden layer were trained through on-line backpropagation.  
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In all experiments, weights were initialized to uniform random values within the range   

[-0.3,0.3].  The learning rate was 0.1 and momentum was 0.5.  Networks trained to 

optimize SSE used an error threshold (dmax) of 0.1. 

 

Feature values (both nominal and continuous) were normalized between zero and one.  

Training patterns were presented to the network in a random order each epoch.  The same 

initial random seed for network weight initialization and sample shuffling was used for 

all experiments on a given data set. 

 

SSE and lazy training continued until the training set was successfully learned or until 

training classification error ceased to decrease for a substantial number of epochs.  The 

softprop schedule was set for an equivalent number of epochs.  A holdout set (between 

10-20% of the data) was randomly selected from the training set each fold to perform 

model validation.  The model selected for test evaluation was the network epoch with the 

best holdout accuracy.   

 

Network architecture was optimized to maximize generalization for each problem and 

learning heuristic.  Pattern classification was determined by winner-take-all (the class of 

the highest outputting node is chosen) on all models tested. 
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5 Results 

 

Table 1 lists the results of a naïve Bayes classifier (taken from [21]), standard SSE 

backpropagation, lazy training, and softprop on the selected UCI MLR corpus.  Each 

field lists first the average holdout set accuracy using 10-fold stratified cross validation.  

The second value is the variance of the classification accuracy over all ten runs.  The best 

generalization and variance for each problem is bolded. 

 

On average, an optimized backpropagation network minimizing SSE is superior to a 

naïve Bayes learner on the above classification problems.  Lazy training obtains a 

significantly higher accuracy over SSE training.  Interestingly, the SSE minimizing 

network achieves an SSE up to two orders of magnitude lower than that of the selected 

lazy trained network, a moot point because SSE is simply a means to an end, not the 

ultimate measure of optimality.  However, this serves to illustrate that the SSE and lazy 

approaches each perform radically different searches of the problem space. 

 

Softprop performed better than both lazy training and simple SSE backpropagation, 

reducing classification error by 17.1% and had the best overall accuracy.  Softprop is 

particularly effective in learning noisy problems (e.g. sonar) where premature saturation 

of weights could trap the network in a local minimum. 

 

Decreasing classification error is a worthy achievement, but of possibly even greater 

import is the fact that softprop has a significant overall reduction in the variance of 
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classification error over the ten cross-validation folds.  Lazy training shows a minor 

overall reduction in standard deviation of error over SSE backpropagation.  Softprop 

provides a larger reduction of 38.6%.  This supports the softprop approach as being more 

robust. 

 

Table 1.  Results on UCI MLR data sets using 10-fold stratified cross-validation. 
Data set Bayes SSE Lazy Softprop
ann 99.7 

0.1 
98.25 
0.54 

97.92 
0.55 

98.29 
0.43 

bcw 93.6 
3.8 

96.78 
2.05 

96.87 
3.76 

97.07 
1.61 

ionosphere 85.5 
4.9 

88.03 
6.12 

90.60 
4.80 

89.17 
4.93 

iris 94.7 
6.9 

93.33 
7.30 

95.33 
4.27 

95.33 
3.06 

musk2 97.1 
0.7 

99.38 
0.21 

99.44 
0.40 

99.23 
0.48 

pima 72.2 
6.9 

77.47 
3.75 

76.69 
5.22 

76.69 
2.37 

sonar 73.1 
11.3 

77.40 
10.77 

81.73 
14.08 

83.65 
8.67 

wine 94.4 
5.9 

94.94 
8.04 

96.63 
4.58 

98.88 
2.29 

Average 88.79 
5.06 

90.70 
4.85 

91.93 
4.74 

92.29 
2.98 

 
 
 

6 Conclusions and Future Work 

 

The softprop heuristic of gradually increasing the required margin of error between 

classifier outputs, reflecting a steady shift between classification error exploration and 

SSE exploitation, was shown to be superior to either optimization of SSE or classification 
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error alone.  Softprop reduces classification error over a corpus of machine learning data 

sets by 17.1% and variance in test accuracy by 38.6%. 

 

While the parameters of the SSE backpropagation learner had been extensively 

optimized, due to time constraints little parameter tuning was done on the softprop 

heuristics.  It is possible that by optimizing the learning parameters even more significant 

improvements could be shown.  Providing specialized exploration policies for local areas 

of the parameter space by dynamically setting a particular µ for each pattern will be 

considered.  In this way, local learning can proceed at different speeds depending on the 

local characteristics of the problem domain.  As learning progresses, the values for the 

local µ can be learned and refined according to need.  We will experiment with the 

feasibility of relaxing the restrictions of our search by allowing a negative-valued µ.  This 

in essence provides a way to “tunnel” through difficult, inconsistent, or noisy portions of 

the problem space in order to escape local minima and might assist in achieving more 

optimal solutions. 
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Abstract. Effective backpropagation training of multi-layer perceptrons depends on the 

incorporation of an appropriate error or objective function.  Classification-based (CB) error 

functions are heuristic approaches that attempt to guide the network directly to correct pattern 

classification rather than using common error minimization heuristics, such as sum-squared error 

and cross-entropy, which do not explicitly minimize classification error.  This work presents 

CB3, a novel CB approach that learns the error function to be used while training.  This is 

accomplished by learning pattern confidence margins during training, which are used to 

dynamically set output target values for each training pattern.  On eleven applications, CB3 

significantly outperforms previous CB error functions, and also reduces average test error over 

conventional error metrics using 0-1 targets without weight decay by 1.8%, and by 1.3% over 

metrics with weight decay.  CB3 also exhibits lower model variance and tighter mean confidence 

interval. 

 

Key words. neural network, backpropagation, classification, error functions, adaptive targets 

 

Abbreviations. CB – classification-based; CE – cross-entropy; SSE – sum-squared error 
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1  Introduction 

 

Multi-layer feed-forward neural networks trained through error backpropagation [11] 

have received substantial attention as robust learning models for classification tasks.  

Classification-based (CB) error functions [9, 10] are a relatively new method of training 

multi-layer perceptrons.  CB functions heuristically seek to directly minimize 

classification error by backpropagating network error only on misclassified patterns.  In 

doing so, they perform relatively minimal updates to network parameters in order to 

discourage premature weight saturation and overfitting.  This is conducive to higher 

accuracy in classification problems than optimizing with respect to commonly used error 

functions, such as sum-squared error (SSE) and cross-entropy (CE).  This work presents a 

novel CB error function, CB3, which improves on existing CB functions.  It is an 

adapting error function that dynamically sets output target values during training by 

learning confidence margins on each pattern in the training set.  These confidence 

margins guide the network in learning each pattern according to the ability of the 

network, selectively learning patterns that appear to provide better generalization while 

avoiding those that would encourage weight saturation and possible overfit without 

improving generalization. 

 

Performance of networks trained with the CB3 error function is compared against 

previous CB error functions, SSE and CE with and without weight decay [7], on a corpus 

of eleven benchmark machine learning datasets.  CB3 shows a significant reduction in 

average test error of 1.8% over standard backpropagation using conventional 0-1 target 
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values without weight decay, and a significant decrease of 1.3% average test error over 

backpropagation augmented by weight decay regularization.  CB3 also exhibits lower 

model variance with smaller standard deviation. 

 

Section 2 reviews related work and motivation for this new approach.  Sections 3 and 4 

present the CB3 algorithm and a working example.  Section 5 describes experiments 

performed and Section 6 gives empirical results and discussion. 

 

2  Motivation for CB3 

 

A prime goal of classification learning is to achieve high recognition rates on unseen 

data.  To generalize well, a learner must use a proper objective function.  The validity of 

using common differentiable metrics like sum-squared-error (SSE) relies on the 

assumption that sample outputs are offset by inherent Gaussian noise, being normally 

distributed about a cluster mean.  For function approximation of an arbitrary signal, this 

presumption often holds.  However, this assumption is invalid for classification tasks, 

where assigned real-valued target vectors are arbitrary values used to represent class 

labels.  This suggests that other error metrics (e.g. cross-entropy) are more suited to 

classification problems.  Likewise, cross-entropy (CE) is preferable to SSE when output 

class distributions are not balanced.  When this is not the case, CE and SSE may perform 

equivalently. 
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Traditionally, classification problems are learned through error backpropagation by 

providing a vector of strict (“hard”) 0/1 target values to represent the class label of a 

particular pattern.  Minimizing an error function with hard target values tends to a 

saturation of weights, often equated with overfitting.  There is evidence that the 

magnitude of the weights in a network plays a more important role in generalization than 

the number of hidden nodes [1].  It follows that overfit might be reduced by keeping the 

weights smaller.  Regularization methods such as weight decay [7,14] are commonly 

used to discourage weight saturation and overfit.  These methods generally assume that 

overfitting is a global phenomenon.  However, overfit can vary significantly in different 

regions of the model.  Proper early stopping methods that take advantage of this 

information can further improve generalization [6]. 

 

An alternate method of discouraging weight saturation is to provide a maximum error 

tolerance threshold, dmax, and not backpropagate any error when network output values 

are within this range of the target values.  That is, for a given dmax, target value, tk, and 

network output, ok, no weight update occurs if the absolute error | tk – ok | < dmax.  This 

threshold is arbitrarily chosen to indicate the point at which a sample has been 

sufficiently approximated.  Using an error threshold, a network is permitted to converge 

with smaller weights [12]. 

 

Rankprop [5] provides an alternative method to training with hard target values and 

empirically shows that it improves generalization.  Rankprop records the output of the 

learner for each training pattern.  It then sorts the samples in the training set based on 
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class, then according to output values.  Thus, a rank of the samples consistent with the 

current model is developed and used to define the target values on the next epoch.  The 

idea behind Rankprop is that in the case of complex nonlinear solutions a simpler, less 

nonlinear function is provided to learn instead.  The resulting simpler model often 

generalizes better. 

 

Prior work has shown [8, 9, 10] that methods of calculating softer values for each training 

pattern based on the network’s output vector improves generalization and reduces 

variance on classification problems over a corpus of benchmark learning problems.  One 

of these, called lazy training or CB1, focuses on classification accuracy backpropagates 

an error signal through the network only when a pattern is misclassified.  CB2, starts with 

the “lazy” targets used in CB1 and gradually separates them until they reach the 0-1 

targets used in standard training.  Other approaches involve using an “oracle” teacher 

network to provide target output values to simpler networks that can learn to emulate its 

behavior. 

 

This work extends CB1 and CB2 by providing a heuristic to learn how much error can be 

tolerated in each training pattern based on how well the network is learning in order to 

improve generalization. 

 

3  CB3 Algorithm 

 
Learning how much error to backpropagate based on the performance of the network 

being trained is, in effect, a meta-learning algorithm.  In other words, the error function 
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itself is learned based on the ability of the network to learn it.  CB3 accomplishes this by 

learning how confident the network is in classifying each training pattern as learning 

progresses.  This method for dynamically learning pattern confidence margins is shown 

in Figure 1.  CB3 modifies the standard back-propagation algorithm in the following 

three ways: 

 

• For each pattern-output node pair, a confidence value is stored and modified over 

time.  This value represents an interval in the range of the squashing function that 

reflects the numeric amount by which the node is assisting in classifying the 

pattern correctly or incorrectly. 

• As training progresses, each pattern’s learned confidence values are used in 

calculating the target output values for the pattern. 

• The objective function is modified based on these target values to decide how 

large of an error signal to backpropagate through the network for each pattern. 

 

Without loss of generality, in this work it is assumed that a single, distinct output node in 

the network represents each class label.  Let N be the number of output nodes (and 

distinct class labels).  On a given pattern, let oj be the output value of the jth output node 

of the network (0 < o < 1, 1 ≤ j ≤ N).  Let T designate the target output class for that 

pattern and cj signify the class label of the j th output node.  For the output node 

corresponding to the pattern’s class label, cj = T.  We refer to this output node as cT for 

short.  For non-target output nodes, cj ≠ T.  Non-target output nodes are called 
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competitors.  Let oT denote the value of the target output node.  Let o~Tmax denote the 

value of the highest-outputting competitor. 

 

Initialization.  
Set expected confidence values, Ci,j, for each pattern-output node ij  pair. 
 
Training. 
Present a training pattern, i, to the network. 
Determine oT and o~Tmax. 
 
1. For each output node j, set its target output, Tj: 
 













≤≠
≤=
>≠−
>=+

≡

0 and  if

0 and  if

0 and  if),0max(

0 and  if),1min(

max~

max~

i,jjT

i,jjT

i,jji,jT

i,jji,jT

j

CTco

CTco

CTcCo

CTcCo

T
α

α

    (1) 

 
2. From each output node j, backpropagate error, εj. 
 

εj ≡ 
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3. For all j, update confidence value Ci,j to make it closer to the observed interval. 

 
Ci,j = Ci,j + η C (OIj – Ci,j)           (3) 

 
where the observed interval, OIj, is defined as 
 

OIj  ≡  




≠−
=−

Tcoo

Tcoo

jjT

jTj

 if

 ifmax~
        (4) 

 
Continue training until stopping criterion is satisfied. 

Figure 1. CB3 algorithm. 

 

In the initialization phase, for each combination of training pattern and network output 

node, a confidence value, C, is stored.  With I training patterns and J output nodes in the 

network, this results in IJ values being stored.  These values indicate the amount of 
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confidence the network’s output nodes expect to have in classifying the corresponding 

pattern correctly.  Positive values indicate that a pattern is expected to be correctly 

classified by the output node while negative values mean it is expected to be 

misclassified by the node.  These values are updated as training progresses.  We have 

found initial confidence values above approximately 0.2 to generalize better than values 

below 0.2 on all applications we tested (see Figure 2). 

 

During training, patterns are shuffled each epoch and stochastically presented to the 

network.  The vector of target values for a pattern’s class outputs is determined as shown 

in Figure 1, equation 1.  Each target value is calculated differently depending on whether 

cj = T and whether the confidence value for that node, Ci,j, is positive or negative.  With a 

positive confidence, the target value for cT is set to o~Tmax + α Ci,j.  That is, it is set to the 

maximum competitor’s output value plus the confidence value on node j for pattern i, 

multiplied by α , a multiplicative factor greater than or equal to one.  This factor 

intuitively refers to how aggressively CB3 will try to separate the target values for 

opposing classes.  A value of one will allow targets to remain closer together while a 

greater value will separate them more.  Conversely, competitor class targets are set to oT -

− α Ci,j, i.e., cT’s output value minus the confidence value, multiplied by α .  We have 

found values for α  above 1.5 to produce better generalization than lower α  values on all 

tested applications (see Figure 3). 
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Figure 2. Influence of CB3’s initial confidence values on the test accuracy of selected 

applications.  The highlighted area is the 95% confidence interval for an observation. 

 

The min(1,� ) and max(0,� ) operators are used to keep the target values within the range of 

possible output values (e.g. [0,1] for the sigmoid activation function). 

 

When a negative confidence value exists, o~Tmax and oT are used as the target values.  The 

reason for this is that a negative confidence indicates that this output node has learned to 

consistently misclassify this pattern over time.  This could happen if the network either 

does not have enough hidden nodes to learn the problem sufficiently, or a noisy or 

incorrectly labeled pattern is encountered.  In either case, further effort to learn these 
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“problem” patterns could lead to premature weight saturation or overfit.  On the other 

hand, it is possible that the network’s hidden nodes have simply not yet learned to model 

this area of the problem space correctly, in which case some effort should still be made to 

learn to classify this pattern correctly.  If this is not the case, however, undue resources 

(in the form of network parameters) have not been squandered in trying to learn a pattern 

that will probably not improve generalization and could even be detrimental to it. 
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Figure 3. Influence of CB3’s α  parameter on the test accuracy of selected applications. 

The highlighted area is the 95% confidence interval for an observation. 
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Once the target vector has been calculated, the error signal for backpropagation through 

the network is determined (see Figure 1, equation 2).  Observe that no error is 

backpropagated by CB3 when an output value is already better than the dynamically set 

target value (i.e., a value higher than the target value for the target class node, or a value 

lower then the target for nodes of other classes).  That is, backpropagating error depends 

on whether the pattern is currently being classified correctly or not, as in CB1 [10].  This 

is akin to setting a dmax error threshold (see section 2) for each pattern based on the value 

of the highest outputting competitor.  This selective error signal avoids updating network 

weights when doing so would not necessarily lead to improved accuracy (the pattern is 

already being classified correctly) while risking premature weight saturation and overfit.  

On misclassified patterns, error is backpropagated only from output nodes that fall short 

of their dynamic target values and are considered in some way responsible for the 

misclassification. 

 

Following the determination and backpropagation of error terms comes the meta-learning 

step, where the learned confidences used in calculating the dynamic target values are also 

iteratively updated (see Figure 1, equation 3).  The current pattern’s observed interval 

vector, OIi, is calculated as shown in Figure 1, equation 4, indicating the amount of split 

between the output values of positive and negative class labels on this pattern, respective 

to each output node. 

 



www.manaraa.com

Chapter 5. CB3: An Adaptive Error Function for Backpropagation Training 

 108 

80

82

84

86

88

90

92

94

96

98

100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0
0.

05
5

0.
06

0
0.

06
5

0.
07

0
0.

07
5

0.
08

0
0.

08
5

0.
09

0
0.

09
5η

C

T
es

t 
A

cc
u

ra
cy

 

Figure 4.  Influence of η C on the test accuracy of selected applications. 

The highlighted area is the 95% confidence interval for an observation. 

 

As an error delta is calculated for iterative weight updating to bring output values closer 

to the target values, likewise the learned confidence value Ci,j is subtracted from the 

actual observed interval OIj and multiplied by learning rate η C to calculate a confidence 

value delta.  This confidence delta is added to the learned confidence.  We observed 

values of η C less than 0.025 to have the highest generalization and lowest variance on all 

tested applications (see Figure 4). 

 

As training continues, Ci,j will be iteratively learned.  It reflects the ability of the network 

output nodes to locally distinguish the target class from the others.  Learning this value 
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has the practical purpose of hinting to the network which patterns can be classified with 

confidence (such as cluster centers), which patterns need to be learned more (fringe 

patterns), and which patterns appear difficult to learn correctly with the current network 

at all (noise or overlapping classes).  This enables the training process to guide the 

network to spend more resources on learning training patterns that most probably 

contribute to higher generalization accuracy while selectively ignoring those that lead the 

network to overfit and weight saturation as it attempts to learn them. 

 

CB3 requires an O(n) scan through the n network outputs to determine the highest target 

and competitor values, to set the target value for each node before backpropagation, and 

then to update the observed confidence interval following backpropagation.  However, 

this additional overhead to the standard backpropagation is negligible compared to the 

computation requirements of O(ih) for feed-forwarding a pattern vector and O(ihn) for 

backpropagation, where i is the number of inputs and h is the number of hidden nodes.  In 

fact, CB3 saves time by omitting the error backpropagation step for correctly classified 

patterns with sufficient output confidences.  The number of epochs required to converge 

is similar for CB3 and CE training,  and CB3 generally converges in about half as many 

epochs as SSE training. 

 

The following section presents a hypothetical example of using the CB3 algorithm. 
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4  CB3: An Example 

 

Given a three-class problem with class labels A, B, and C, a pattern i is labeled as type B.  

Let α  = 1.5 and η C = 0.01. 

 

Let the current confidence values for this pattern be [0.1, 0.3, 0.1], indicating the network 

output nodes all believe they are performing correctly but with only a moderate margin 

separating them. If the network were to output [0.4, 0.7, 0.3] on this pattern, oT is 0.7 and 

o~Tmax is 0.4.  The target vector T would be calculated to be 

 

T = [oT − mCi,j , o~Tmax + α Ci,j , oT − α Ci,j] 

   = [0.7 – 1.5(0.1) , 0.4 + 1.5(0.3) , 0.7 – 1.5(0.1)] 

   = [0.55, 0.85, 0.55]. 

 

All values are within the imposed ranges, so the min/max operators are omitted here for 

clarity.  Next, the error vector ε is calculated.  The first and third outputs are satisfactorily 

outside the learned confidence margins but the second node has a target value exceeding 

its output.  Thus ε is [0,0.15,0].  Error is backpropagated from the second output node 

only.  Its observed confidence may increase over subsequent iterations. 

 

The pattern’s confidence values are now each updated by the delta η C (OIj – Ci,j), where 

the observed interval vector OI is 

 



www.manaraa.com

Chapter 5. CB3: An Adaptive Error Function for Backpropagation Training 

 111 

 OI = [oT – oj , oj – o~Tmax , oT – oj] 

 = [0.7 – 0.4, 0.7 – 0.4, 0.7 – 0.3] 

 = [0.3, 0.3, 0.4] 

 

and the update delta is 

 

= [0.01(0.3 – 0.1), 0.01(0.3 – 0.2), 0.01(0.4 – 0.1)] 

= [0.002, 0.001, 0.003]. 

 

The learned confidences are increased to [0.102, 0.201, 0.103].  As training progresses, if 

the network continues to output similar values, the confidences on this pattern will 

continue to grow.  As these confidences get large, greater error is backpropagated and the 

observed interval over network outputs will tend to reflect these confidences. 

 

5 Experiments 

 

Several well-known benchmark classification problems were selected from the UC 

Irvine Machine Learning Repository (UCI MLR) [2].  The problems were selected so 

as to have a wide variety of characteristics (number of patterns, number and type of 

features, and complexity) in order to analyze the robustness of the learning 

algorithm. 
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Experiments were performed using a privately developed C++ library comparing feed-

forward multi-layer perceptron networks optimizing SSE and cross-entropy (CE), both 

with standard 0-1 targets with and without weight decay regularization, to the CB1-3 

algorithms.  It was observed that SSE and CE optimizing networks yielded nearly 

identical results using both static 0-1 targets and with the CB1-3 algorithms.  Therefore, 

only the results of training with CE are presented for brevity. 

 

The multi-layer perceptrons had a single, fully connected hidden layer and were trained 

through on-line backpropagation.  The optimal number of hidden nodes was empirically 

determined for each task based on holdout set accuracy, searching layer sizes within the 

range from one to fifty hidden nodes.  In all experiments, network weights were 

initialized to uniform random values within the range [-0.1,0.1] [13].  The learning rate 

was 0.1 and momentum was 0.7.  Weight decay values between λ  = 0.00001 to 0.0001 

were used, optimized for each application [7].  For CB3, α  = 1.5, η C = 0.01, and the initial 

pattern confidence values were 0.25. 

 

Feature values (both nominal and continuous) were normalized between zero and one.  

Training patterns were presented to the network in a random order each epoch.  The same 

initial random seed for network weight initialization and sample shuffling was used for 

all experiments on a given dataset. 

 

Pattern classification was determined by winner-take-all (the class of the highest 

outputting node is chosen).  Training continued until the training set was successfully 



www.manaraa.com

Chapter 5. CB3: An Adaptive Error Function for Backpropagation Training 

 113 

learned or training set classification error ceased to decrease for a substantial number of 

epochs.  The resultant number of epochs trained was comparable among all approaches 

within a factor of three.  The model selected for test evaluation was the network on the 

epoch with the best holdout set accuracy, where the holdout set consisted of 20% of the 

original training data. 

 

6  Results and Discussion 

 

Table 1 lists the results of testing a multi-layer perceptron backpropagating error 

maximizing cross-entropy without weight decay (BP), with weight decay (BPw), and 

CB1-3 on the selected applications.  Each field lists first the average test set accuracy 

using 30-fold stratified cross validation.  Neural network experiments were averaged over 

30 runs with random initial weights.  The first value in each cell is the average accuracy 

over these runs.  The second value is the 95% Student’s t confidence interval for these 

means.  The best generalization for each problem is underlined. 

 

Table 1. Results on UCI MLR datasets using stratified cross-validation. 

Data 
set 

ann bal- 
ance 

bcw derm ecoli ionos iris musk2 pima sonar wine avg 

BP 98.1 
0.18 

95.0 
1.80 

97.1 
1.25 

97.2 
1.66 

85.6 
3.89 

91.6 
2.90 

94.9 
3.72 

99.4 
0.13 

72.1 
3.19 

80.6 
3.21 

98.5 
1.80 

91.8 
0.37 

BPw 95.2 
0.21 

96.6 
1.59 

96.7 
0.74 

97.2 
1.72 

86.1 
3.82 

92.8 
1.65 

96.7 
1.54 

97.0 
0.25 

75.6 
1.63 

83.2 
2.88 

98.1 
1.09 

92.3 
0.36 

CB1 97.4 
0.30 

97.4 
0.89 

97.2 
1.10 

96.1 
2.00 

84.2 
4.30 

90.6 
2.82 

96.7 
2.97 

99.2 
0.15 

76.3 
2.63 

84.1 
3.00 

97.8 
2.99 

92.5 
0.37 

CB2 98.2 
0.19 

97.1 
1.25 

96.9 
1.14 

97.8 
1.34 

86.0 
4.30 

92.0 
2.31 

96.0 
3.48 

99.3 
0.10 

75.5 
2.88 

83.7 
2.27 

98.3 
2.88 

92.8 
0.37 

CB3 98.3 
0.15 

97.2 
1.00 

97.5 
0.81 

97.8 
1.39 

86.6 
3.70 

92.9 
2.43 

97.3 
2.51 

98.9 
0.21 

78.1 
2.78 

86.1 
2.32 

98.6 
1.71 

93.6 
0.35 
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CB3 has higher test accuracy and tighter mean confidence interval then CE without 

weight decay (BP) on ten of the eleven datasets tested.  BP outperformed CB3 on the 

musk2 dataset.  CB3 reduces average test error by 1.8% over BP, significant with a 

pairwise Student’s t confidence of p < 0.05.  CB3 has a tighter confidence interval, which 

indicates it has a smaller standard deviation and is more robust to perturbations in the 

initial network parameter values and pattern presentation order. 

 

CB3 has higher accuracy than BPw on all eleven datasets and exhibits an average 

decrease in test error of 1.3%, significant with a pairwise t confidence of p < 0.05.  CB3 

has a tighter confidence interval than BPw on six of the eleven datasets and is slightly 

higher than BPw on average.  CB3 outperforms CB1 and CB2 on nine of eleven datasets, 

with an average decrease in test error of 1.1% and 0.8%, respectively, significant with a 

pairwise t confidence of p < 0.05.  CB3 has a tighter confidence interval than CB1 and 

CB2. 

 

For a given function f(x), there may exist a function g(x) that also solves the given 

problem but is easier for backpropagation to learn [3, 4, 5].  Recall that CB3 does not 

modify the actual backpropagation algorithm used for updating the network parameters in 

any way.  CB3’s power comes through the modification of target values as a tool for 

smoother training.  Most often, conventional target values of 0 and 1 are used in 

classification tasks to learn proper class labels.  CB3, using target values greater than 0 
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and less than 1, consequently calculates much smaller error terms during the initial phase 

of training.  Less error may result in a function that is easier for backpropagation to learn. 

 

7 Conclusions and Future Work 

 

CB3 is shown to be superior to multi-layer backpropagation networks trained with 

previous CB error functions and CE with hard targets without weight decay (BP) and 

with weight decay (BPw) over a corpus of eleven applications.  CB3 significantly reduces 

average test error by 1.8% over BP, by 1.3% over BPw, and by 1.1% and 0.8% over CB1 

and CB2, respectively.  It is surmised that CB3, learning to approximate iteratively 

learned target values, provides a function that is easier for backpropagation to learn than 

the strict conventional 0-1 classification function. 

 

Since the learned confidence values are able to implicitly represent noisy patterns, they 

could be used to explicitly mark overlapping class regions.  This knowledge is useful to 

reduce local uncertainty for problems with regions of the feature space that are inherently 

multi-class.  A method for such an approach and analysis of its efficacy is forthcoming.  

An ROC analysis of CB3 is planned on applications where the cost of false positives is 

different than false negatives. 

 

Furthermore, preliminary tests have shown that pattern misclassifications are not highly 

correlated between CB3 and BP.  We will experiment with combining BP- and CB-
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trained networks in hybrid ensembles and voting committees to further improve 

generalization. 
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Chapter 6 
 
Analysis of Classification-based Error Functions 
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Abstract.  Effective backpropagation training of multi-layer perceptrons depends on the 

incorporation of an appropriate error or cost function.  Classification-based (CB) error 

functions are heuristic approaches that attempt to guide the network directly to correct 

pattern classification rather than using common error minimization heuristics, such as 

sum-squared error (SSE) and cross-entropy (CE), which do not explicitly minimize 

classification error.  This work presents a comparative study of SSE, CE, CB1, CB2, and 

CB3 error functions on a corpus of machine learning applications.  It is demonstrated that 

CB3 achieves significantly higher generalization and lower variance than the other error 

functions on these datasets.  Further analysis shows CB3 to be more robust to initial 

network parameter settings, pattern presentation order, learning rate, the number of 

hidden nodes, and the ability to avoid weight saturation during training.  This suggests 

CB3 is capable of performing well while requiring a minimum of learning parameter 

tuning.  

 

Keywords: neural networks; backpropagation; classification; error functions; adaptive 

targets 
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1 Introduction 

 
Artificial neural networks (ANNs) have received substantial attention as robust learning 

models for classification learning tasks and have been shown to perform comparably to 

other learning algorithms (Caruana & Niculescu-Mizil, 2006).  Classification-based (CB) 

error functions (Rimer & Martinez, 2004, Rimer & Martinez, 2006a; Rimer & Martinez, 

2006b) are a relatively new method of training multi-layer perceptrons.  CB approaches 

heuristically seek to minimize classification error more directly by backpropagating 

distinct error signals from correctly classified and misclassified patterns, and from target 

and non-target output nodes.  They tend to perform relatively minimal updates to network 

parameters in order to discourage premature weight saturation and overfitting.  This is 

conducive to higher accuracy in classification problems than optimizing with respect to 

commonly used error functions, such as sum-squared error (SSE) and cross-entropy (CE). 

 

We have observed a growing propensity in the machine learning community to reject the 

merit of new machine learning algorithms based solely on published empirical results in 

comparative testing.  Several reasons for this are described in (Salzberg, 1999), including 

lack of real problem validation, testing on only a single or few data sets, parameter tuning 

with the help of test data, and experimental data being accompanied with insufficient 

statistical support.  Given that existing classification-based error functions are heuristic in 

nature, intuitive and perform well in practice but with only modest theoretical foundation, 

the purpose of this work is to present a sufficient empirical and statistical comparison of 

CB and conventional error functions to assert general utility in classification domains. 
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Statistical significance results are shown across several isolated parameter controls that 

are known to influence convergence in backpropagation training: sensitivity to initial 

network parameter settings, variance in training patterns, pattern presentation order, 

learning rate, and number of hidden nodes across several benchmark applications.  The 

purpose of these tests is to demonstrate algorithm robustness independent of parameter 

tuning on specific algorithms or datasets.  Across all tests, the CB3 algorithm is shown to 

be predominantly superior, suggesting CB3 is capable of performing well while requiring 

a minimum of parameter tuning.  Further behavioral analysis support these results and 

suggest promising avenues in further research into classification-based learning. 

 

A background discussion of issues involved in selecting an objective function for neural 

network error backpropagation is provided in section 2.  The CB1-3 algorithms are 

outlined in section 3.  Experiments and results are presented in section 4.  Further 

discussion and analysis is provided in section 5. 

 

2 Conventional Objective Functions 

 

To learn with gradient descent, an error function (also called a cost, loss or objective 

function) is applied to measure the deviance of model predictions from true values of 

problem instances.  Although machine learning research has been mainly concerned with 

classification problems, gradient descent procedures, such as backpropagation, do not 

allow direct minimization of the number of misclassified training patterns (Duda, Hart, & 

Stork, 2001).  Hence, the error function must be formulated such that classification 
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accuracy is increased as objective error is minimized.  A problem with conventional error 

functions (i.e., SSE and CE), however, is that they do not always decrease monotonically 

with classification error (LeCun, Denker, & Solla, 1990).  This, combined with other 

practical issues listed below, suggests that ANNs may be better suited to learning 

classification tasks by means of other error functions. 

 

Learning to classify a pattern from N classes is often viewed as a regression problem with 

an N-valued response, with a target value of 1 in the nth position if the observation falls in 

class n and 0 otherwise (LeBlanc & Tibshirani, 1993).  The values of zero and one can be 

considered idealized, “true”, or hard target values.  However, ANNs have a real-valued 

output vector and are able to represent more general solutions than simple Boolean 

decisions.  In practice, there is no reason why network solutions should require 0-1 

values. 

 

Using hard targets for training creates practical problems for ANNs.  In order to output 

values approaching 0 and 1 (±1 for hyperbolic tangent), network weights must 

necessarily grow large.  Also, since different portions of the problem tend to be learned at 

different times during training, using hard targets often leads to premature weight 

saturation, making it harder and slower to learn patterns that have yet to be learned 

(underfitting), while forcing the learner to overfit patterns that have already been learned.  

One common way to deal with this is to use “softer” targets like 0.1 and 0.9.  This 

presents a less severe alternative but still suffers from these issues. 
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Rankprop (Caruana, Baluja, & Mitchell, 1996) provides an alternative method to training 

with 0-1 target values that exhibits empirical test improvement when measuring the area 

under the ROC curve.  Rankprop records the output of the learner for each training 

pattern.  It then sorts the patterns in the training set based on class, then according to 

output values.  Thus, a rank of the patterns consistent with the current model is developed 

and used to define the target values on the next epoch.  The idea behind Rankprop is that 

in the case of complex nonlinear solutions a simpler, less nonlinear function is learned 

instead. 

 

The validity of using conventional differentiable measures like SSE as an objective 

function to minimize error relies on the assumption that pattern outputs are offset by 

inherent Gaussian noise, being normally distributed about a cluster mean.  For 

approximating the function of an arbitrary signal this presumption often holds.  However, 

this assumption is invalid for classification tasks where 0-1 target vectors are arbitrary 

values used to represent class labels. 

 

Cross-entropy (CE) assumes idealized class outputs (i.e., target values of zero or one for 

a sigmoid activation) rather than noisy outputs as does SSE (Mitchell, 1997) and is 

therefore more appropriate to classification problems.  CE is also preferable to SSE when 

the output class distributions are not balanced.  However, by nature, CE also tends to 

weight saturation. 
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The classification figure-of-merit (CFM) objective function was introduced in 

(Hampshire II, 1990) for learning classification problems when it was shown that SSE 

and CE errors are not necessarily correlated with classification accuracy.  CFM separates 

the values of network outputs by as large a range as possible such that error minimization 

is monotonic with increasing classification accuracy.  Like SSE and CE, this metric 

encourages weight saturation, which is often indicative of overfitting and detrimental to 

generalization (Bartlett, 1998). 

 

3 Classification-based error functions 

 

Overfit is typically considered a global phenomenon.  However, the degree of overfit can 

vary significantly throughout the input space.  Caruana, Lawrence and Giles (2000) show 

that overly complex MLP models can improve the approximation in regions of 

underfitting, while not significantly overfitting in other regions.  However, their 

discussion is limited to function approximation tasks and not classification problems, 

which are affected in a different way by bias-variance interactions (Friedman, 1997; 

Domingos, 2000). 

 

A model’s bias and variance, as defined in (Geman & Bienenstock, 1992), can be 

intuitively characterized as the model’s error and its sensitivity to training data, 

respectively.  Domingos (2000) formally defines bias as the loss incurred by a model’s 

main prediction (the most common prediction for classifiers) relative to the optimal 

(Bayes) prediction and variance as the average loss of individual predictions relative to 
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its main prediction.  Bias is independent of the training set and is zero for an optimal 

predictor.  Variance is independent of test accuracy and is zero for a learner that does not 

take the training set into account when forming a hypothesis.  There is an inherent 

tradeoff between fitting a limited training data sample perfectly and generalizing 

accurately on the entire population (Sharkey, 1996).  Under these definitions, it is proven 

in (Friedman, 1997) that low squared-error bias is not important for classification, but 

rather 0-1 bias, and classification error may be reduced toward optimal by reducing 

variance alone (e.g., by using a cost function robust to idiosyncrasies in the training data). 

 

The goal of training a neural network for classification is not to minimize the error 

between predetermined target and output values, but rather to produce output vectors that 

can be accurately translated to correct classifications.  There are several possible ways to 

process the network’s output vector in calculating an error signal for backpropagation to 

fit the data properly.  A simple variant of using 0-1 targets involves augmenting the error 

function with a maximum error tolerance threshold, dmax, which is the smallest absolute 

output error to be backpropagated.  In other words, given dmax > 0, a target value, tj, and 

network output, oj, no network update occurs if the absolute error | tj – oj | < dmax.  This 

threshold is arbitrarily chosen to represent a point at which a pattern has been sufficiently 

approximated (usually 0.1, yielding target values of 0.1 and 0.9 instead of 0 and 1).  With 

an error threshold, the network is permitted to converge with smaller weights 

(Schiffmann, Joost, & Werner, 1993).  Weight decay (Krogh & Hertz, 1992) is a 

regularization approach that can discourage premature weight saturation and may 

improve generalization.  More dynamic approaches, such as Rankprop (Caruana, 1995), 
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avoid the use of predefined hard targets, setting ranked soft target values for the training 

patterns each epoch.  CB error functions are more dynamic, calculating soft targets online 

for each training pattern based on the network’s current performance. 

 

3.1 CB1 error function 

Without loss of generality, it is assumed that a single, distinct output node in the network 

represents each class label.  Let K be the number of output nodes in a network (and 

distinct class labels).  Let o designate the activation value of a node (0 ≤ o ≤ 1 for 

sigmoid).  Let ok be the activation value of the kth output node in the network.  Let T 

designate the target class for the current training pattern and ck signify the class label of 

the kth output node.  For target output nodes, ck = T, and for non-target output nodes, ck ≠ 

T.  Non-target output nodes are called competitors. 

 

Let oTmax denote the maximum value among target output nodes (noting that there may be 

only one target node in many problem formulations), 

 

 oTmax ≡ ok : ck = T. 

 

Let o~Tmax denote the value of the competitor outputting the highest o, 

 

 o~T max ≡ max { ok : ck ≠ T }. 

 

The error signal, ε, back-propagated from the kth output node is defined as 
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εk ≡ 
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where µ is a value between 0 and 1 that serves as an error or confidence margin between 

the outputs of target and competitor nodes, and min( � ,1) and max(� ,-1) enforce the [-1,1] 

range limit of the logistic function.  Represented in closed form, the error (1) is 

 

εk ≡ )1,min( max~ kT oo −+ µ ))( and ( maxmax~ TTk ooTcI ≥+= µ  + 

       )1,max( max −−− kT oo µ ))( and ( max µ−≥≠ Tkk ooTcI            (2) 

 

where I is the indicator or characteristic function.  This is the error function to be 

minimized during training.  Observe that when o~Tmax + µ < oTmax, no error signal is 

backpropagated from the target output.  Conversely, for a competing node k with output 

ok, when ok < oTmax - µ no error signal is backpropagated from k.  The error delta used for 

backpropagation is 

 

δk = εk f 
′
(ok) 

 

where f 
′
(ok) is the standard error gradient, which is 

 

 f 
′
(ok)  = ok(1 - ok) 
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for a sigmoid squashing function, and can be removed on output nodes when using cross-

entropy (Joost & Schiffmann, 1998).  A more detailed discussion of CB1 is found in 

(Rimer & Martinez, 2006a). 

 

3.2 CB2 

CB2 (Rimer & Martinez, 2004) replaces the use of a single error function with a mixture 

taking advantage of both CB1 and SSE/CE optimization at appropriate times during the 

learning process.  The heuristic is as follows: 

 

For each training epoch, let the error margin µ = t/T, where t ∈ {0, 1, 2, …} 

is the current epoch and T is the maximum number of epochs to train. 

 

CB2 causes a smooth transition from CB1 to SSE/CE optimization as the search 

progresses.  The CB1 exploration phase first steers the decision surface toward a general 

problem solution without saturating network weights prematurely.  Then, as learning 

tends toward SSE/CE exploitation, the distance of the decision boundary from proximate 

patterns is maximized.  This approach is analogous to simulated annealing.  CB2 has 

been shown to have smaller generalization variance on tested applications than CB1. 

 

3.3 CB3 

CB3 (Rimer & Martinez, 2006b) extends CB1 and CB2 by heuristically calculating how 

much error can be tolerated in each training pattern in order to improve generalization 
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based on how well the network is learning.  That is, the error function itself is learned 

based on the network’s ability to learn it.  CB3 accomplishes this by observing how 

confident the network is in classifying each training pattern as learning progresses.  This 

method is shown in Figure 1.  CB3 augments predefined error functions in the following 

three ways: 

 

• For each (pattern, output node) pair, a confidence value is stored and modified over 

time.  This value represents a margin within the range of the squashing function that 

reflects the numeric amount by which the node is assisting in classifying the pattern 

correctly or incorrectly. 

• As training progresses, target output values for each pattern are calculated using these 

learned confidence values. 

• The error function is set by these target values.  This decides how large an error 

signal to backpropagate. 

 

In the initialization phase, confidence values are set for pattern-network output combined 

pairs.  These values indicate the amount of confidence the network’s output nodes expect 

to have in classifying the corresponding pattern correctly.  Positive values semantically 

indicate a pattern is expected to be classified correctly while negative values mean it is 

expected to be misclassified.  These values are updated as training progresses. 
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Initialization.  
Set expected confidence values, Ci,n, for each pattern-output node pair. 
 
Training. 
Present a training pattern, i, to the network. 
Determine oTmax and o~Tmax. 
 
1. For each output node n, set its target output, Tn: 
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2. From each output node n, backpropagate error, εn. 
 

εn ≡ 
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3. For all n, iteratively update confidence value Ci,n to make it closer to the observed 
interval. 

 
Ci,n = Ci,n + η C (OIn – Ci,n)       (3) 

 
where η C is a small (~0.01) confidence learning rate and the observed interval, OIn, is 
defined as 
 

OIn  ≡  




≠−
=−

Tcoo

Tcoo

nnT

nTn

 if

 if

max

max~       (4) 

 
Continue training until stopping criterion is satisfied. 

Figure 1. CB3 algorithm. 
 
 

For each training pattern, its vector of target values is determined (Figure 1, equation 1).  

Each output node’s target value is calculated distinctly depending on whether it 

represents the target class and whether the confidence value for that node is positive or 

negative.  The value α  determines how aggressively CB3 will try to separate target values 
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for opposing classes.  A value of zero will allow targets to remain close together while a 

greater value will separate them more.  

 

Based on the calculated target vector, the error signal for backpropagation through the 

network is determined (Figure 1, equation 2).  Observe that no error is backpropagated 

from an output node when its value is already closer to the corresponding limit of the 

squashing function than the calculated target. 

 

Following backpropagation, the meta-learning step of iteratively updating learned 

confidences used in calculating the dynamic target values (Figure 1, equation 3) is 

performed.  First, the observed interval (the difference between output node values on 

positive and negative class labels) vector is measured (Figure 1, equation 4), respective to 

each output node.  Then, as an error delta is calculated for iterative weight updating to 

bring output values closer to the target values, the learned confidence value Ci,n is 

subtracted from the observed interval OIn and multiplied by small, positive learning rate η C to calculate a confidence value delta.  This confidence delta is added to the learned 

confidence. 

 

As training continues, Ci,n will be iteratively learned.  It reflects the ability of the network 

output nodes to locally distinguish the target class from the others.  Learning this value 

has the practical purpose of hinting to the network which patterns can be classified with 

confidence (such as cluster centers), which patterns need to be learned more (fringe 

patterns), and which patterns appear difficult to learn correctly with the current network 
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at all (noise or overlapping classes).  This enables the training process to guide the 

network to spend more resources on learning training patterns that most probably 

contribute to higher generalization accuracy while selectively ignoring those that lead the 

network to overfit or weight saturation as it attempts to learn them. 

 

The CB3 error function introduces three new learning parameters: Ci,n, the confidence 

pattern-class vector, η C, a confidence learning rate, and α , a confidence multiplier used in 

separating competing output node target values.  In all experiments presented here, Ci,n = 

0.25, η C = 0.01, and α  = 1.5.  These values were shown to perform uniformly well across 

several test applications (Rimer & Martinez, 2006b). 

 

4 Experiments 

 

Experiments were performed comparing six error functions: sum-squared error (SSE), 

cross-entropy (CE), CE WD (cross-entropy with weight decay of λ  = 0.00001 (Krogh & 

Hertz, 1992)), CB1, CB2, and CB3.  Eleven benchmark applications from the UC 

Irvine Machine Learning Repository (UCI MLR) (Blake & Merz, 1998) were used in 

testing (see Table 1).  The problems were selected so as to have a wide variety of 

characteristics (size, number and type of features, complexity) in order to analyze the 

robustness of these error functions to varying learning conditions.  Feature values 

were normalized between zero and one. 
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To learn each problem, a fully connected feed-forward network with one output node per 

class label and a single hidden layer trained through online backpropagation was used.  

Training patterns were randomly shuffled before each epoch.  An error tolerance 

threshold (dmax, described in section 3) of 0.1 was used.  Pattern classification was 

determined by winner-take-all (the class of the highest outputting node is chosen) on all 

models tested.  Training continued until the training set was successfully learned or until 

a decrease in classification error on a holdout set was not observed for 500 consecutive 

epochs.  The model selected for testing was the one with the best holdout set 

classification accuracy.  Results were collected using 10-fold stratified cross-validation. 

 

4.1 Training parameters 

Four network learning or model parameters were used as control variables: 

• initial network weight values 

• pattern presentation order 

• learning rate, and 

• number of hidden nodes. 

These parameters have been shown to be influential to multilayer perceptron learning 

over repeated studies in the literature.  Numerous techniques of setting these learning 

controls have been put forth, including heuristic rule-of-thumb approaches, tuning by 

empirical testing, or based on more sophisticated algorithms (Campbell & Coombes, 

1995; Thimm and Fiesler, 1997; Istook & Martinez, 2002).  Rather than show how the 

error functions perform under specific conditions with optimized parameter values, our 

goal is to present their robustness across the entire practical range of parameter values 



www.manaraa.com

Chapter 6. Analysis of Classification-based Error Functions 

 133 

(see sections 4.2 to 4.5).  In other words, we were interested in how each condition 

affects the performance of each error function, and also whether any error function 

dominates (outperforms the other error functions across all parameter values). 

 

Except where noted in each experiment in this section, learning parameter controls were 

fixed as follows.  Network weights were initialized to uniform random values in the 

range [-0.1, 0.1] (Thimm and Fiesler, 1997).  Pattern presentation order was set by 

always shuffling the order using the same random seed.  Learning rate was 0.1 and 

momentum was 0.7.  The number of hidden nodes used was selected by determining the 

minimum size required to achieve near (within 0.5%) the best holdout set accuracy 

observed with each of these error functions (discussed further in section 4.5).  The 

datasets, number of patterns in the set, and network architecture used for each dataset are 

listed in Table 1. 

 
Table 1.  Datasets and network architectures. 

Dataset # Patterns Network 
ann 7200 21-30-3 
balance 625 4-6-3 
bcw 699 9-10-2 
derm 358 34-5-6 
ecoli 336 7-8-8 
ionosphere 351 33-9-2 
iris 150 4-2-3 
musk2 6598 166-5-2 
pima 768 8-9-2 
sonar 208 60-15-2 
wine 178 13-16-3 
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4.2 Effect of variance in initial network weights 

First, we evaluated the influence of variance in initial network weights on test accuracy.  

We performed ten-fold stratified cross-validation thirty times on each data set, each time 

with a distinct random seed used in initializing network weights.  That is, one seed value 

was used for all tests on the first run, a second seed used for all tests on the second run, 

etc. 

 

Figure 2 shows aggregated test accuracies and 95% confidence intervals for these error 

functions by column.  Results for a support-vector machine using the LIBSVM software 

library with optimal parameter search (Chang & Lin, 2001) are included in the first 

column for baseline comparison (without the network confidence intervals shown for 

variance in initial parameter settings). 

 

The neural network models performed significantly better than an optimal SVM on these 

datasets.  Varying only initial weight parameters, CB1-3 and CE performed significantly 

better than SSE.  CB1 and CB2 performed better than CE on average, but not 

significantly.  CB2 has the tightest confidence interval, indicating that it is most robust to 

variance in initial weight values.  CB3 has significantly better test accuracy than all other 

algorithms.  This would indicate that CB3 performs the best, and CB1-3 and CE will 

outperform SSE, given the specified learning parameters, for any reasonable sets of initial 

network weights in the distribution we used. 

 



www.manaraa.com

Chapter 6. Analysis of Classification-based Error Functions 

 135 

Varying Initial Weights
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Figure 2. Test performance averaged over thirty runs with different initial weight 
settings. 

 
4.3 Effect of variance in pattern presentation order 

Next, we determined the influence of varying pattern presentation order.  Each 

application was tested thirty times, with seed values of 1 to 30 used to shuffle the 

patterns.  That is, one seed value was used for all tests on the first run, a second seed used 

for all tests on the second run, etc.  The results of this test are more applicable to real-

world ANN usage than the study in section 4.2 because the effect pattern presentation 

order has subsumes the effect of initializing the network to any sufficiently small random 

weights.  An intuitive reason for this is that the error backpropagated due to presenting a 

certain training pattern (i.e., input vector) generally results in a distinct set of weights 

than from presenting any other pattern.  Hence, which training patterns are stochastically 

presented first to the network influences the direction of updates more than how the 
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initial weight values given affects subsequent update direction.  Naturally, this logic does 

not apply to batch training, but does apply to mini-batch approaches. 

 

The same initial network weight values were used for each algorithm on a given dataset.  

All other parameters were set as before.  The aggregated test accuracies with 95% 

confidence intervals are shown in Figure 3. 

 

CB1-3 and CE performed significantly better than CE WD and SSE.  CB2 performed 

better than CB1, and CB1 better than CE, but not at 95% significance.  CB2 is 

significantly better than CE, and CB3 exhibits the highest test accuracy by a significant 

margin. CB3 also has the tightest confidence interval, followed by CB2, indicating these 

error functions are most robust to pattern presentation order.  This indicates that, given 

the specified network architectures and learning rate, CB3 outperforms the other error 

functions on these datasets for reasonable sets of initial network weights and pattern 

distributions.  Consistent with the notion that pattern presentation order has a greater 

influence on the final state of the network than does the initial network state, it may be 

observed that average test error is lower and confidence intervals are wider in Figure 3 

than in Figure 2. 
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Varied pattern presentation order
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Figure 3. Test performance averaged over thirty runs with different pattern presentation 

orders. 
 
 
Table 2 lists the standard deviation in test accuracy (in percent) due to pattern variance 

across the training set partitions used in 10-fold cross-validation, averaged over all test 

runs performed in this section, plus or minus a 95% confidence interval.  Observe these 

values are much greater than deviation in accuracy due to initial network weights or 

pattern presentation order.  Squared-error cost functions exhibit the highest model 

variance and CB3 exhibits the lowest variance. 

 
Table 2.  Aggregate standard deviation in test accuracy (in percent) due to pattern 

variance. 
CB1 CB2 CB3 CE CE WD SSE 
5.47±1.02 5.42±1.01 5.04±0.94 5.60±1.05 5.62±1.05 5.66±1.06 
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4.4 Effect of varying the learning rate 

Third, the influence of learning rate was evaluated.  We re-ran the tests thirty times, each 

time using a learning rate from 0.01 to 0.3 in uniform increments.  Generalization 

accuracy, averaged over the applications tested, is shown for each error function and 

learning rate in Figure 4.  Confidence intervals are not shown here for clarity, but 

remained near the ranges shown in Figure 3. 
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Figure 4. Average test accuracy over applications at various learning rates. 

 
 
CB1’s performance is less at a learning rate below 0.1 and roughly steady above 0.1.  

CB2 performs best with a learning rate between 0.05 and 0.25.  CB3 performs best at a 

learning rate of 0.1 or higher.  SSE performed roughly the same for learning rates above 

0.05 and worse for learning rates below 0.05.  However, CE and CE WD performed best 
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for learning rates of 0.1 or less and their performance degraded steadily for greater 

learning rates.  We surmise this is due to having a much higher error signal 

backpropagated through the network for a given target-output difference than any of the 

other error functions, making it difficult to converge with larger step sizes.  While the 

other algorithms perform roughly the same for these applications and random seed, given 

their optimal learning rate, CB3 is shown to always perform significantly better than the 

other error functions for any learning rate above 0.05.  This is useful to know, for it 

indicates that CB3 performs well without learning rate tuning for specific applications.  

The possibility of removing the backpropagation learning rate parameter entirely from 

CB3 training is slated for future work. 

 

4.5 Effect of varying the number of hidden nodes 

It is sometimes believed that networks with too many degrees of freedom generalize 

poorly.  This line of reasoning is based on two observations: (1) that a sufficiently large 

network is able to memorize the training data if training continues long enough, and (2) 

even with early stopping approaches, it is not apparent whether some form of overfit has 

occurred.  By reducing the learning capacity of such a network, it is thereby forced to 

generalize as it no longer has the capability to memorize the training data.  In order to 

perform a proper theoretical analysis of network capacity and generalization, the search 

heuristic must also be taken into account (Caruana, 1997; Caruana, Lawrence & Giles, 

2000).  Gradient descent search heuristics do not give all hypotheses an equal 

opportunity.  The inductive bias of standard backpropagation is to start with a simple 

hypothesis (through usually small, random weights) and make the hypothesis more 
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complex (by increasing the magnitude of the weights) until the network sufficiently 

learns the problem.  Thus, backpropagation is biased toward hypotheses with small 

weights, examining solutions with larger weights only as dictated by necessity.  Excess 

network capacity does not necessarily hinder generalization, as learning stops as soon as 

possible.  This means that generalization can be less sensitive to excess network capacity, 

and that using a network that is too small can hurt generalization more than using 

networks that are too large (Caruana, 1997). 

 

To verify this, we tested how well each error function performs over a range of network 

sizes.  For this experiment, we reran the above experiment thirty times, using networks 

where the number of nodes in the hidden layer was varied from 1 to 30 nodes.  

Generalization, averaged over the applications tested, is shown for each error function 

and number of hidden nodes in Figure 5. 
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Figure 5. Average test accuracy over applications at various learning rates. 

 
 
For this application corpus, all error functions approximated their best demonstrated test 

accuracy with six hidden nodes or higher.  This is in keeping with observations that 

proper early stopping heuristics are more important to network generalization than the 

number of hidden nodes in a sufficiently large network (Caruana, Lawrence & Giles, 

2000) and that stopping learning before the global error minimum has the effect of 

network size selection (Wang, Venkatesh, & Judd, 1994).  However, CB3 performed 

significantly better than the other error functions across all networks of matching size.  

Also, CB3 networks of four or more hidden nodes performed better than networks trained 

using the other error functions of any size. 
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The results of sections 4.2-4.5 indicate that CB3 is a better classification learner, 

independent of network size, learning rate, and idiosyncrasies in initial network 

conditions and pattern presentation order. 

 

5 Analysis 

 

It has been shown that the number of nodes in a network is not as influential as the 

magnitude of the weights (Bartlett, 1998).  The topology, rather, serves more as a 

mechanism that lends itself to solving of certain problems, while the weights represent 

how tightly the network has fit itself to the (admittedly incomplete) training data 

distribution.  Network complexity is defined in (Wang, Venkatesh, & Judd, 1994) as the 

number of parameters and the capacity to which they are used in learning (i.e., their 

magnitude).  They show it is best to make minimal use of the capacity of the network for 

encoding the information provided by the learning patterns, which is in keeping with the 

methodology of CB error functions. 

 

5.1 Network parameter sizes 

Problems of premature weight saturation, such as underfitting and increased model bias, 

were discussed in section 2.  Here we examine to what extent the error functions we 

tested encourage weight saturation.  Using the network sizes and learning parameter 

values listed in section 4.2, we performed a trace of network weight parameter 

magnitudes during training.  We observed that CB3 retains the smallest weight 

magnitudes during the entire training process, followed in order by CB1, CB2, SSE, CE 
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WD, and CE, which induces the largest network parameters.  For brevity, we present 

histograms of network weight magnitudes while learning the bcw dataset only (see 

Figures 6a-f), noting that this relative ordering was observed across all tested 

applications.  On each graph, note that at epoch 0, all weights are almost 0.  As training 

progresses, these weights tend to become larger.  Figure 7 is a condensed version of 

these, showing the mean weight size during training for each error function. 

 

Generally, weight magnitudes of 1.0 or less are considered to be in the approximately 

linear region of the sigmoid squashing function, while parameters become saturated (i.e., 

enter the asymptotic region of the sigmoid) with values above 2.0.  Figure 6a 

demonstrates how CB1 avoids saturating weights (with the exception of a single bias 

weight in the situation shown here).  CB2’s behavior (Figure 6b) is very similar to that of 

CB1.  It can be observed how the steadily increasing value for �  (recall its use as a 

margin booster, mentioned in section 3.2) makes small weights larger at a slow, even 

pace.  Using CB3 (Figure 6c), most network weights remain in the linear region of the 

sigmoid.  The smoothness of CB3’s weight histogram across training reflects the intuition 

that CB3 alters pattern target values methodically, without straining the network’s 

capacity.  It is conceivable that CB3 will also behave well using simpler linear output 

activations without further algorithm modification or tuning of training parameters. 
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Figure 6a. Weight magnitudes as training progresses with CB1. 
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Figure 6b. Weight magnitudes as training progresses with CB2. 

 



www.manaraa.com

Chapter 6. Analysis of Classification-based Error Functions 

 145 

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 9

9.
5

Epoch

300

600

900

0

10

20

30

40

50

60

70

80

90

100

 
Figure 6c. Weight magnitudes as training progresses with CB3. 
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Figure 6d. Weight magnitudes as training progresses with SSE. 
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Figure 6e. Weight magnitudes as training progresses with CE. 
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Figure 6f. Weight magnitudes as training progresses with CE with weight decay. 
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Figure 7. Mean weight magnitude as training progresses on bcw. 

 
 
SSE (Figure 6d) produces larger average weights than CB1-3, and it can be observed how 

network parameters saturate steadily from the first training epochs.  CE (Figure 6e) has 

the greatest tendency to weight saturation because it is defined to calculate the greatest 

error signal of all these error functions for a given learning rate.  Hence, well behaved 

learning rates tend to be less for CE than for SSE and CB1-3.  A smaller learning rate 

provides smoother convergence and slows weight saturation.  However, these are often 

achieved at the cost of a greater number of training epochs before stopping (i.e., the 

epoch from which the final/best network model is selected).  We have observed that the 

models with the highest holdout set accuracy have roughly the same average weight 

magnitude, regardless of (reasonable) learning rate.  Therefore, it is difficult to say 

whether small learning rates provide any practical improvement for SSE or CE with 

respect to avoiding premature weight saturation.  Weight decay, however, does 



www.manaraa.com

Chapter 6. Analysis of Classification-based Error Functions 

 148 

demonstrably ameliorate the saturation of weights (Figure 6f), although the phenomenon 

of saturation is still readily observed. 

 

5.2 Classifier output difference 

Before training, networks initialized with small, random weights typically have high 

mean squared-error.  It has been shown that high accuracy network solutions exist where 

measured squared-error is nearly as high as a network comprised of small, randomly 

initialized weights (Rimer & Martinez, 2006a).  This evidence, coupled with the radically 

distinct weight distributions observed above, lend credence to the notion that CB error 

functions induce a fundamentally different search of hypothesis space than squared-error 

or cross-entropy optimization. 

 

We explore this further by calculating the classifier output difference (COD) distance 

described in (Peterson & Martinez, 2005) among the network solutions from the 

experiments performed above.  The COD distance between two hypotheses is the 

frequency (a real value between 0 and 1) that they disagree on pattern classification.  This 

distance can be estimated by observing the frequency that the hypotheses, H1 and H2, 

disagree with each other on the classification of test patterns: 
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where T is the set of test patterns and I is the indicator or characteristic function. 
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We calculated aggregate COD distances for the hypotheses selected for the experiments 

in section 4.3, both within the group of hypotheses induced by an error function, which 

we will call intra-class comparisons, and also against the hypotheses of the other error 

functions, or inter-class comparison.  Table 3 lists the COD distances, averaged across all 

applications and test runs.  Intra-class distances are shown along the diagonal and inter-

class distances are shown in non-diagonal cells.  This matrix is symmetric, so the values 

in lower triangle are omitted here for clarity.  Average inter-class COD for each error 

function and the difference of this value from the intra-class COD (“distinction”) are 

shown in the bottom two rows. 

 

Table 3.  COD distances. 
Error 
function CB1 CB2 CB3 CE 

CE 
WD SSE 

CB1 .0282 .03682 .0431 .0435 .0449 .0494 
CB2  .0302 .0404 .0408 .0439 .0429 
CB3   .0260 .0461 .0493 .0483 
CE    .0330 .03541 .0417 
CE WD     .0338 .0442 
SSE      .0344 
average .0435 .0409 .0455 .0415 .0436 .0453 
distinction .0153 .0107 .0195 .0085 .0098 .0109 

 
 
Similar error functions have low COD when compared to one another, and vice-versa.  

Here, CE and CE WD have the lowest distance from one another (cell denoted by the 

superscript ‘1’), followed by CB1 and CB2 (denoted by the superscript ‘2’), which is as 

we would expect due to their similar natures. 

 

For these models (from section 4.3), intra-class COD shows behavioral test difference 

due to randomness in pattern presentation of otherwise identical training situations.  
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Smaller intra-class COD is suggestive of less variance in the error function.  The relative 

ordering of values along the diagonal is generally consistent with the relative sizes of 

confidence intervals shown in Figure 3.  In both cases, CB3 has the smallest variance, 

showing it to be the most robust of these error functions in this regard. 

 

The difference between intra- and inter-class distances (shown in the bottom row of 

Table 3) translates to distinction in the particular error function’s behavior.  A distinction 

of zero indicates the behavioral difference of this error function from the others is on 

average functionally indistinguishable from intra-class model variance due to pattern 

presentation order.  Positive non-zero values indicate that the error functions are 

measurably distinct from the others.  CB3, followed by CB1, show the greatest level of 

behavioral distinction from the other error functions. 

 

Table 3 may be depicted in three-dimensions by calculating a best fit reduction of the 

five-dimensional (non-Euclidean) COD distances among these error functions (see Figure 

8).  In general, the sphere volumes represent intra-class COD on the considered 

applications and may be interpreted as approximate representations of the variance of 

solutions that networks using a particular error function converge to, given the training 

parameter settings.  Inter-class COD is depicted by the distance between centers.  The 

farther apart two spheres are, the more often hypotheses of the two error functions 

disagree.  Observe the CB error functions are behaviorally closer to one another than to 

the squared-error functions.  CB3 has the smallest sphere, illustrating it has the lowest 

model variance. 
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Figure 8. COD distances of Table 3 in three dimensions. 

 
 
These error functions’ 95% confidence intervals cover a range of 0.2-0.3% (see Figure 3).  

However, their average intra-class COD distances range from about 2.6% to 3.4% (see 

Table 3).  This indicates much greater behavioral variance across solutions than is 

observable solely through observing variance in test accuracy.  Furthermore, while 

difference in test accuracy across error functions is about 1-2%, Table 3 shows average 

behavioral difference across these error functions to be greater than 4%.  With test error 

averaging about 7-8% (see Figure 3), this indicates a low correlation of classification 

errors across error functions.  It is therefore likely that combining models induced by 

different error functions into hybrid ensembles or voting committees would produce 
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higher test accuracy than that of homogeneous ensembles.  This will be considered in 

future work. 

 

6 Conclusion 

 

The CB1-3 error functions generalize significantly better than squared-error minimization 

over the tested classification applications on average.  CB3 generalizes significantly 

better than the other error functions tested and is most robust to pattern variance, initial 

network weight values, pattern presentation order, learning rate, and number of hidden 

nodes, suggesting it operates consistently well with minimal or no parameter tuning or 

operator intervention in the training process. 

 

Observing the magnitude of network weight parameters during training showed CB error 

functions avoid premature weight saturation on the problems tested.  It was also shown 

that classification errors between networks trained with different error functions have 

relatively low correlation.  It is expected that hybrid ensembles or voting committees of 

CB, SSE, and CE error functions will reduce test error more than homogeneous 

ensembles of networks trained using any of these error functions. 

 

Acknowledgments: We thank Adam Peterson for the use of his 3-D rendering tool. 
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Chapter 7 
 
Improving Posteriors with Point-wise Local Binning 
 

Michael Rimer, Adam Peterson and Tony Martinez 
Department of Computer Science, Brigham Young University, Provo, UT 84602 

 
 
Abstract.  Recent work has shown the efficacy of calibrating learning model outputs to 

provide more accurate probability predictions.  We present a novel point-wise local 

binning method, PL1, for calibrating model outputs and measuring model calibration 

fitness.  This method is compared to modern methods for model calibration: Platt Scaling 

and Isotonic Regression.  While these methods have been shown previously to not 

improve neural network calibration fitness or classification accuracy, we show that PL1 

does significantly reduce neural network calibration error to improve general probability 

predictions.  We also quantitatively compare PL1 to isotonic regression on naïve Bayes, 

k-nearest neighbor, and bagged decision tree ensembles, for which they perform 

comparably. 

 

1 Introduction 

 

In many machine learning applications, it is important for the learning model to yield 

accurate posteriors, for instance, when the cost function is asymmetric or unknown, or 

where the outputs of one layer of a multi-tier system are used as probabilities by another.  

In these situations, achieving high classification accuracy may not be sufficient.  Certain 

learning methods output values that may be used naturally as posteriors, such as 

softmaxed neural networks and bagged decision tree ensembles.  Other learning models 
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do not output posteriors, such as decision trees, or may output biased posteriors (e.g. 

naïve Bayes and SVMs) [1]. 

 

Reliability diagrams [2] are commonly used in visualizing model calibration for real 

problem domains where true conditional probabilities are not known.  The accepted 

method for generating these diagrams involves discretizing the prediction space into a set 

number of exclusive bins and plotting the mean predicted value against the true (i.e., 

empirically measured) fraction of positive cases.  For a well-calibrated model, predictions 

will fall along the diagonal line, representing a model whose confidence matches the 

actual posterior probability for a given data set (see Figure 1).  Calibration mean-squared 

error (CMSE) is calculated by averaging the squared distance of the model’s prediction 

from the measured posterior across all bins. 

 

Another way of calculating reliability is by using a proper scoring rule, which has the 

properties of maximizing score when the model outputs correct probabilities, while also 

discriminating optimally with respect to classification.  One such example of a proper 

scoring rule is sum-squared error, also called the Brier score [3]. 
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Figure 1.  Reliability diagram using the conventional 10-bin method. 

 
 

In certain cases, introducing a post-processing step of model output calibration, such as 

Platt Scaling [4] or Isotonic Regression [5,6], may yield more accurate or less biased 

posteriors.  Niculescu-Mizil and Caruana [1] showed that using reliability diagrams, these 

methods may be effective in improving model calibration for boosted trees, random 

forests, and SVMs, while not reducing or increasing calibration error for neural networks. 

 

In this work, we propose a point-wise local binning method, PL1, for performing model 

calibration and measuring reliability.  PL1 has intuitive and practical improvements over 
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the current state-of-the-art methods for learning model calibration and the traditional 

approach of measuring reliability diagrams.  We empirically validate PL1 with 

experiments on eleven classification problems.  Of particular note is that PL1 is shown to 

improve neural network calibration in almost all cases, which was shown to be unlikely 

with the aforementioned calibration approaches. 

 

2 Calibration Methods 

 

In this section we outline three current calibration methods for mapping model 

predictions to posterior probabilities, namely: binning, Platt scaling and isotonic 

regression, and discuss some of their practical aspects. 

 

2.1 Methods of Model Calibration 

Binning [7] is a non-parametric method that can be used for mapping when the shape of 

the mapping function is unknown.  In binning, training patterns are sorted by model score 

into n bins of equal size.  Then, given a test pattern x, it is assigned a bin according to its 

model output score, which is subsequently corrected to the measured probability that x 

belongs to class c, which is the fraction of training examples in the bin that belongs to c 

(see Figure 2).  The number of bins is problem and model dependent, and must be chosen 

by cross-validation. 
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Figure 2.  Calibration by binning. 

 
 

Platt noticed a sigmoid-shaped distortion in comparing SVM outputs to predicted 

probabilities.  His method attempts to correct this distortion by passing model outputs 

through a sigmoid [4].  The sigmoid's parameters are optimized using a maximum 

likelihood estimation from a fitting training set (see Figure 3).  Fitting model outputs to a 

sigmoid has been shown to work well for some methods, but not for others, such as naïve 

Bayes [1,6]. 
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Figure 3.  Sigmoid calibration curve generated by Platt’s method. 

 
 

A more general method for calibrating predictions based on isotonic regression was 

introduced by Zadrozny and Elkan in [5,6].  This method is a non-parametric form of 

regression that can be considered an intermediary approach between binning and sigmoid 

fitting, where the only restriction is requiring the calibration curve to be isotonic 

(monotonically increasing).  A straightforward method for generating such a curve is the 

pair-adjacent violators (PAV) algorithm [8], which finds a stepwise constant solution (see 

Figure 4). 
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Figure 4.  Isotonic regression curve generated using the PAV algorithm. 

 
 

2.2 Practical considerations when calibrating 

In order to avoid introducing unwanted bias, it is generally desirable that the data used for 

calibration be separate from the data used to train the model.  In practice, this holdout set 

may be the same as the holdout set used to perform model parameter selection.  In [1], 

Niculescu-Mizil and Caruana showed that Platt scaling generally performed better than 

isotonic regression using PAV when only a small amount of calibration data is available, 
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while isotonic regression usually outperformed Platt scaling with large amounts of 

calibration data. 

 

Of these three methods, binning's approach of empirically predicting a probability for 

each bin and correcting model outputs to reflect that probability most directly matches 

the method of producing reliability diagrams and evaluating model calibration.  However, 

binning has several undesirable artifacts.  One is the necessity of choosing the number of 

bins by cross-validation.  With small and unbalanced data sets, cross-validation is likely 

to indicate a suboptimal number of bins.  Also, even when cross-validation yields a 

globally-optimal number of bins, this representation can underestimate or overestimate 

the optimal bin width for local regions of the curve.  Furthermore, the size (domain) of 

bins is fixed and the boundaries are chosen arbitrarily.  Binning gives the patterns of each 

bin a uniform posterior estimate and sharp jumps in probability between bins, which are 

probably incorrect.  One conceivable way to mitigate this issue is by interpolating 

between bin centers to arrive at a more reliable probability [9]. 

 

In [1], empirical tests performed by Niculescu-Mizil and Caruana showed both Platt's 

method and isotonic regression to be unsuitable for neural network calibration.  They 

explain that neural networks already produce well-calibrated probabilities when 

measured with conventional reliability diagrams, hence their reliability cannot be further 

improved.  However, in Section 4, we show that neural network calibration may be 

improved by PL1. 
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3 PL1 algorithm 

 

In this section we present PL1, a point-wise local binning method for measuring posterior 

probability, and describe how it may be used for model calibration and measuring 

reliability. 

 

3.1 Algorithm 

Without loss of generality, here we assume a two-class problem, with patterns labeled 

either positive or negative.  PL1 takes a set of training patterns, T, of size N, sorted on the 

learning model’s output, o, and measures a posterior probability for each pattern.  For a 

given pattern, i∈T, with output oi, a local window, Wi, of the n ∈T closest points with 

respect to o is considered to empirically estimate the posterior, ip̂ , at model output oi by 

tallying how many patterns in this window are of the positive class.  Together, the set of 

points (oi, ip̂ ) form the plot used for recalibrating model outputs on test patterns. 

 

To calibrate a test pattern with output o, the two bounding points, L and R, on the 

calibration plot with respect to o are considered, and their p̂ values interpolated to arrive 

at a recalibrated output value, o′ , as follows: 

LR

L
LRL oo

oo
pppo

−
−

−+=′ )ˆˆ(ˆ       (1) 
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For speed, in (1) we use linear interpolation, but cubic- or other forms of interpolation 

may be used by considering additional bounding points.  Pseudo-code for PL1 is listed in 

Table 1. 

 
Table 1.  PL1 algorithm for estimating posterior probabilities from uncalibrated model 

predictions. 
Sort training patterns, T, according to the learning model’s output, o, on each pattern. 

For each pattern, i∈T, with output oi: 
Wi = the set of n points closest to oi, where 

n= class positive in the patterns # . 

Estimate posterior ip̂ = fraction of patterns belonging to the positive class in 

Wi. 
Add point (oi, ip̂ ) to the calibration plot. 

Given a test pattern with output o, let the recalibrated model output o′ = the 
interpolated p value of points bounding o on the calibration plot. 

 
 

For example, if the learning model outputs a value of 0.7 on a test pattern, and the points 

bounding this value on the calibration plot are (0.65, 0.5) and (0.75, 0.7), then the 

recalibrated model output would be 0.5 + (0.7 – 0.5) * (0.7 – 0.65) / (0.75 – 0.65) = 0.6. 

 

Although the calibration methods discussed in section 2 are designed for binary 

classification, multi-class problems may be considered by considering them as multiple 

binary problems, calibrating the binary models, and recombining the predictions [6]. 

 

This technique is likewise applicable to PL1, as follows: 
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For each class label c: 

1. Generate a calibration plot, Pc, as outlined in Table 1, sorting on the learning 

model’s output for c 

2. Use Pc to calibrate the model output for c on test patterns. 

 

That is, one calibration plot per class is generated after training and stored for use during 

the test phase.  For multi-output models like neural networks, this procedure is simple 

and straightforward. 

 

If too few training patterns are present within a problem class for probability 

measurements to be reliable (e.g. 30), then PL1 abstains from calibrating model outputs 

for that class. 

 

3.2 Implementation details 

After sorting the patterns by output value, a single linear scan through the data is all that 

is required to first determine the local window for the first point and then slide that 

window along the set of ordered points, re-centering it on each subsequent point.  Hence, 

the time required to generate the calibration plot on sorted data is O(N). 

 

We set window size n equal to the square root of the number of training patterns in the 

positive class to provide a balance between statistical reliability and precision.  Assuming 

the training set is representative, as the number of patterns in the training set increases, so 

can the number of patterns included in each bin without losing representational accuracy.  
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There may be several points which are given the same value for o by the learning model.   

In this case, all patterns given an identical output are considered, allowing more than 

patterns #  in some local windows.  That is, all patterns that are tied for the n closest 

patterns are included in the local window.  Adding more patterns of the same distance 

increases statistical reliability of the empirical posterior measure ip̂  while not degrading 

precision. 

 

Once the calibration plot is constructed, it will contain N (x,y) pairs, where N is the 

number of training points considered.  If this number is unwieldy during deployment, it 

may be reduced by utilizing any number of binning or curve fitting approximation 

techniques.  A discussion of these methods is outside the scope of this paper. 

 

3.3 Comparison to existing methods 

PL1 provides advantages over each of the above calibration methods.  The main 

advantage is that, in contrast to the above methods, PL1 makes no assumptions about 

how the learning model treats the training data.  The ramifications of this take many 

forms, described below. 

 

Unlike binning, PL1 does not have an arbitrary partitioning of examples into fixed-width 

bins or need to determine the number of bins by cross-validation.  A globally-optimal bin 

width or number of bins is not assumed.  Instead, the bin width is fit to each training 

point based on local context.  PL1 does not assume all patterns in each bin have a single 

common posterior, so bins are allowed to partially overlap. 
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PL1 improves on Platt's method because it does not assume a specific shape distortion of 

pattern output values (e.g., sigmoidal), but is able to fit any shape, given enough data to 

match that shape's complexity.  However, PL1 does not require a large amount of data in 

order to take effective measurements for posterior estimation since point bins may 

overlap. 
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Figure 5.  Sample calibration plot generated by PL1. 

 
 

Figure 5 shows a representative calibration plot generated by PL1.  Observe that curves 

generated by PL1 are not isotonic.  Constraining the calibration curve to be isotonic is 
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valid when the assumption that the learning model ranks examples correctly is met.  

However, this is not true for every model.  For instance, consider a linear model (e.g., a 

perceptron) attempting to learn a problem that is not linearly separable. 

 

 
Figure 6. A simple non-linearly separable problem (A), a calibration curve for a 

perceptron attempting to learn this problem constructed via isotonic regression (B), and 
an optimal calibration plot (C). 

 
 

For the hypothetical data set in Figure 6, the non-linear nature of the problem precludes 

the use of an isotonic curve to perform optimal calibration for a linear learning model.  

Here, the problem is too complex for a perceptron to learn (Figure 6a) and an isotonic 

curve does not allow for optimal model calibration (Figure 6b).  If the restriction of a 

non-decreasing probability output ranking is relaxed, then an optimal calibration plot may 

be attained (Figure 6c).  Therefore, we consider it an improvement to remove the 

assumption that examples are ranked correctly by the learning model, without hindering 

the ability to generate an isotonic curve when this assumption is met. 

 

Observe that isotonic calibration curves do not change the ranking of patterns, but non-

isotonic calibration can alter pattern ranking.  PL1 has greater power to alter a model's 
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outputs, and hence more potential to alter classification accuracy.  In the case presented 

in Figure 6, this property could improve the model's classification accuracy toward the 

optimal value.  For other problems, it is also possible the model's overall classification 

accuracy could be reduced.  However, considering that the purpose for calibrating model 

outputs is to perform in problem domains where good probability values are important as 

well as classification accuracy, it is acceptable to tradeoff some classification accuracy 

for improved probability outputs. 

 

As an aside, calibration algorithms that are better able to fit a model's actual performance 

on a data set not only improve model reliability, but could also be used to study the 

general suitability of various families and types of learning models to the task of learning 

various problem domains.  For example, a posterior curve such as the one shown in 

Figure 6c might show that the learning model is underpowered to correctly learn the 

problem at hand and a more powerful model ought to be used.  Such a study, however, is 

outside the scope of this work. 

 

If obtaining an isotonic function is desired, the PAV algorithm may be applied to the 

calibration plots generated by PL1 as a post-processing step. 

 

3.4 PL1 applied to plotting reliability diagrams 

The problems with using binning for generating calibration curves discussed in section 

3.3 also exist with the traditional method for plotting reliability diagrams (i.e. using a set 

number of exclusive bins of equal width across the output range can lead to inaccurate 
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results).  In [1], Niculescu-Mizil and Caruana found that neural networks appear fairly 

well-calibrated on reliability diagrams (see Figure 3).  However, PL1 shows models that 

are less well-calibrated in comparison. 

 

The model shown in Figure 2 above exhibits a mean-squared error (MSE) of 0.0030 

using the conventional 10-bin method, approximately a 5% mean error in posterior 

estimation.  In contrast, using PL1 to plot reliability calculates a MSE of 0.0103, 

approximately a 10% mean error in posterior estimation (see Figure 7).  The 10-bin 

method overestimates the model’s reliability due to the issues discussed in section 2.2. 

 

Figure 7 shows reliability plots generated using our method before and after point-wise 

calibration for the learning model used in Figure 2.  MSE before and after calibration was 

0.0103 (10% mean error) and 0.0059 (7.5% mean error), respectively.  However, on other 

data sets or with other learning models, conventional reliability diagrams may 

underestimate the model’s calibration compared to PL1. 
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Figure 7.  Reliability diagram constructed using PL1 to measure reliability before and 

after calibration by PL1. 
 

4 Experiments 

 

Eleven well-known benchmark classification problems were selected from the UC 

Irvine Machine Learning Repository (UCI MLR) [10].  The problems were selected 

so as to have a variety of characteristics (number of patterns, number and type of 

features, number of class labels, and complexity) in order to analyze the robustness 

of our calibration method (see Table 2). 
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Table 2. Properties of benchmark data sets. 

Data set Patterns Features Classes 
ann 7200 21 3 
balance 625 4 3 
bcw 699 9 2 
derm 358 34 6 
ecoli 336 7 8 
ionosphere 351 33 2 
iris 150 4 3 
musk2 6598 166 2 
pima 768 8 2 
sonar 208 60 2 
wine 178 13 3 

 
 

Experiments were performed on four learning algorithms: artificial neural networks 

(ANN), naïve Bayes, a bagged ensemble of 100 ID3 decision trees (100-BDT), and k-NN 

with k= patterns # . 

 

Feature values (both nominal and continuous) were normalized between zero and one.  

Pattern classification was determined by winner-take-all (the class of the output node 

with the highest value is chosen).  Testing was performed using 10-fold stratified cross-

validation.  Each experiment was rerun ten times and the results averaged. 

 

The ANN models were standard feed-forward multi-layer perceptron networks 

optimizing cross-entropy, both with and without weight decay regularization.  The multi-

layer perceptrons had a single, fully connected hidden layer and were trained through on-

line backpropagation.  The optimal number of hidden nodes was empirically determined 

for each task with a validation set, searching layer sizes within the range from one to fifty 

hidden nodes.  Networks had one output node per class (including on two-class 
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problems).  In all experiments, network weights were initialized to uniform random 

values within the range [-0.01,0.01] [11].  Training patterns were presented to the 

network in a random order each epoch.  Learning rate and momentum were optimized for 

each application by cross-validation.  Weight decay values of λ  = 0, 0.00001, 0.00003, 

0.0001, 0.0003, and 0.001 were considered and the optimal value used for each 

application [12].  Training continued until the training set was successfully learned or 

training set classification error ceased to decrease for a substantial number of epochs.  

The model selected for test evaluation was the network on the epoch with the best 

holdout set accuracy, where the holdout set consisted of 20% of the original training data. 

 

Results are displayed in Tables 3-6.  Each row displays the averaged results on one data 

set.  The left half of each table (columns 2-4) displays classification accuracy before 

calibration and after calibration with PL1 and isotonic regression with PAV.  The right 

half (columns 5-7) displays MSE before and after PL1 and PAV calibration.  We chose to 

display MSE because it is a proper scoring rule [3] that is minimized as calibration is 

improved. 
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Table 3. ANN performance on benchmark data sets. 
Dataset Classification 

Accuracy 
Accuracy 
after PL1 

Accuracy 
after PAV 

MSE MSE 
after 
PL1 

MSE 
after 
PAV 

Ann 0.9909 0.9909 0.9909 0.0106 0.0050 0.0050 
Balance 0.9344 0.9320 0.9296 0.0488 0.0364 0.0366 
Bcw 0.9717 0.9718 0.9715 0.0216 0.0224 0.0225 
Derm 0.9736 0.9745 0.9761 0.0144 0.0081 0.0072 
Ecoli 0.8297 0.8218 0.8187 0.0805 0.0340 0.0598 
Ionosphere 0.9200 0.9280 0.9277 0.0624 0.0593 0.0598 
Iris 0.9580 0.9533 0.9520 0.0321 0.0192 0.0203 
Musk2 0.9869 0.9864 0.9869 0.0162 0.0123 0.0123 
Pima 0.7661 0.7645 0.7608 0.1565 0.1578 0.1579 
Sonar 0.8426 0.8429 0.8400 0.1252 0.1241 0.1248 
Wine 0.9822 0.9789 0.9789 0.0195 0.0134 0.0128 
Average 0.9233 0.9223 0.9212 0.0534 0.0447 0.0472 

 
 

Though not the primary goal of model calibration, it is of interest to note model test 

accuracy before and after calibration (Table 3, columns 2-4).  Classification accuracy is 

approximately the same before and after calibration.  With PAV, accuracy decreases by 

0.2%, and with PL1, average accuracy decreases by 0.1%. 

 

Columns 5-7 show MSE without calibration, after PL1, and after PAV, respectively.  For 

ANNs (Table 3), improvement is shown in almost all cases, except for bcw and pima.  

MSE is reduced 15%, from 0.0589 to 0.0502 with PL1, and reduced 10.5% to 0.0526 

with PAV. 
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Table 4. 100-BDT performance on benchmark data sets. 
Dataset Classification 

Accuracy 
Accuracy 
after PL1 

Accuracy 
after PAV 

MSE MSE 
after 
PL1 

MSE 
after 
PAV 

Ann 0.9990 0.9992 0.9992 0.0005 0.0005 0.0005 
Balance 0.9760 0.9760 0.9760 0.0189 0.0147 0.0147 
Bcw 0.9971 0.9941 0.9941 0.0057 0.0033 0.0041 
Derm 0.9888 0.9888 0.9888 0.0037 0.0033 0.0033 
Ecoli 0.9881 0.9851 0.9851 0.0067 0.0034 0.0032 
Ionosphere 0.9972 0.9972 0.9972 0.0109 0.0030 0.0030 
Iris 1.0000 1.0000 1.0000 0.0038 0.0007 0.0004 
Musk2 0.9985 0.9986 0.9986 0.0033 0.0010 0.0010 
Pima 0.9714 0.9714 0.9701 0.0390 0.0248 0.0258 
Sonar 0.9712 0.9712 0.9712 0.0293 0.0159 0.0159 
Wine 1.0000 1.0000 1.0000 0.0045 0.0006 0.0006 
Average 0.9897 0.9892 0.9891 0.0115 0.0065 0.0066 

 
 

Accuracy is practically unchanged when calibrating the decision tree ensemble.  MSE is 

reduced by more than 40% after calibration.  PL1 and PAV exhibit roughly the same 

performance on average. 

 
Table 5. Naïve Bayes performance on benchmark data sets. 

Dataset Classification 
Accuracy 

Accuracy 
after PL1 

Accuracy 
after PAV 

MSE MSE 
after 
PL1 

MSE 
after 
PAV 

Ann 0.9549 0.9608 0.9613 0.0242 0.0217 0.0213 
Balance 0.9152 0.9136 0.9168 0.0797 0.0530 0.0491 
Bcw 0.9678 0.9649 0.9649 0.0315 0.0330 0.0323 
Derm 0.9022 0.9078 0.9106 0.0183 0.0176 0.0175 
Ecoli 0.6577 0.7530 0.8006 0.0762 0.0480 0.0363 
Ionosphere 0.8519 0.8946 0.8917 0.1399 0.0917 0.0867 
Iris 0.9533 0.9600 0.9533 0.0242 0.0265 0.0279 
Musk2 0.8459 0.8459 0.8459 0.2500 0.2500 0.2500 
Pima 0.7513 0.7487 0.7500 0.1786 0.1751 0.1691 
Sonar 0.6731 0.6923 0.7260 0.2943 0.2041 0.1942 
Wine 0.9719 0.9775 0.9719 0.0140 0.0134 0.0164 
Average 0.8587 0.8745 0.8812 0.1028 0.0849 0.0819 
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Table 6. k-NN performance on benchmark data sets. 
Dataset Classification 

Accuracy 
Accuracy 
after PL1 

Accuracy 
after PAV 

MSE MSE 
after 
PL1 

MSE 
after 
PAV 

Ann 0.9269 0.9360 0.9363 0.0408 0.0373 0.0371 
Balance 0.8416 0.8336 0.8352 0.1108 0.0830 0.0843 
Bcw 0.9414 0.9649 0.9678 0.0393 0.0289 0.0281 
Derm 0.6620 0.6927 0.6816 0.0892 0.0753 0.0764 
Ecoli 0.8482 0.8452 0.8482 0.0298 0.0288 0.0280 
Ionosphere 0.8348 0.8832 0.8832 0.1379 0.0907 0.0902 
Iris 0.9800 0.9800 0.9800 0.0177 0.0167 0.0178 
Musk2 0.9323 0.9315 0.9303 0.0517 0.0460 0.0459 
Pima 0.7396 0.7331 0.7383 0.1741 0.1774 0.1745 
Sonar 0.6683 0.6635 0.6346 0.2019 0.2044 0.2005 
Wine 0.6966 0.6966 0.6966 0.1170 0.1213 0.1180 
Average 0.8247 0.8328 0.8302 0.0918 0.0827 0.0819 

 
 

PL1 and PAV calibration significantly improve classification accuracy and MSE for 

naïve Bayes and k-NN.  PAV shows better classification improvement for naïve Bayes 

than PL1, and PL1 performs better than PAV on k-NN.  PL1 and PAV improve MSE on 

naïve Bayes and k-NN, with PAV performing slightly better on average. 

 

5 Conclusions 

 

In this work PL1, a new algorithm for performing empirical estimates of model 

posteriors, was presented.  This technique may be used in constructing model calibration 

curves for outputting more accurate posterior probabilities.  PL1 outperforms isotonic 

regression using the pairwise-adjacent violators algorithm (PAV) when calibrating neural 

networks.  Where prior work [1] has shown PAV [4,5,6] unable to improve neural 

network reliability, applying PAV on these data sets does show an improvement in error.  
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PL1 generally outperforms PAV and exhibits a significant reduction in neural network 

calibration error on nearly all data sets tested.  PL1 was shown to perform well for data 

sets and learning models of varying size and complexity, reducing MSE for neural 

network models by 15% on average.  PL1 performs comparably to PAV when calibrating 

a bagged decision tree ensemble.  On naïve Bayes, PAV performs better than PL1, and 

with k-NN, PL1 and PAV perform comparably. 

 

We plan to apply PL1 to other learning algorithms, such as classification-based error 

functions for neural networks [13], which have been shown to yield higher classification 

accuracy than cross-entropy optimization, but do not output accurate posteriors.  It is 

expected that post-training calibration with PL1 will improve these networks’ posterior 

probability prediction while allowing them to retain their higher level of classification 

accuracy. 
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Chapter 8 
 
Calibrating Classification-based Networks to Improve Posteriors 
 

Michael Rimer and Tony Martinez 
Department of Computer Science, Brigham Young University, Provo, UT 84602 

 
 
Abstract.  Classification-based (CB) error functions can improve neural network 

classification accuracy over conventional objective functions like cross-entropy (CE).  

However, resultant model outputs are not usable as posterior probabilities, as opposed to 

CE trained networks.  This work applies a new point-wise local binning method, PL1, for 

calibrating CB model outputs to provide more accurate probability predictions.  

Empirical tests show that calibrated CB networks can yield more accurate posteriors than 

uncalibrated CE networks while retaining a significantly higher degree of accuracy.  

When calibrated, CB and CE models yield equally accurate posterior probabilities, while 

CB models remain more accurate. 

 

1 Introduction 

 

In many machine learning applications, it is important for the learning model to yield 

accurate posteriors.  This is applicable to problem domains with unknown or asymmetric 

cost functions or in multi-tier learning systems, where it is desired that the outputs of one 

layer of the system be used as probabilities in helping the next layer make a decision.  In 

these situations, achieving high classification accuracy may not be sufficient.  Certain 

learning methods output values that may be used naturally as posteriors, such as 

softmaxed cross-entropy (CE) neural networks and bagged decision tree ensembles.  
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Other learning models do not output posteriors, such as decision trees, or may output 

biased posteriors (e.g. naïve Bayes and SVMs) [1]. 

 

Classification-based (CB) error functions [2,3,4] are learning algorithms that implement 

objective functions designed to maximize classification accuracy.  Though more accurate 

with respect to classification accuracy than CE networks, CB networks are not designed 

to yield output values usable as accurate posterior probabilities. 

 

Reliability diagrams [5] are commonly used in visualizing model calibration for real 

problem domains where true conditional probabilities are not known.  The accepted 

method for generating these diagrams involves discretizing the prediction space into a set 

number of exclusive bins and plotting the mean predicted value against the true (i.e., 

empirically measured) fraction of positive cases.  For a well-calibrated model, predictions 

will fall along the diagonal line, representing a model whose confidence matches the 

actual posterior probability for a given data set (see Figure 1).  Calibration mean-squared 

error (CMSE) is calculated by averaging the squared distance of the model’s prediction 

from the measured posterior across all bins. 
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Figure 1.  Reliability diagram using the conventional 10-bin method. 

 
 

In certain cases, introducing a post-processing step of model output calibration, such as 

Platt Scaling [6] or Isotonic Regression [7,8] may yield more accurate or less biased 

posteriors.  Niculescu-Mizil and Caruana [1] showed that using reliability diagrams, these 

methods may be effective in improving model calibration for boosted trees, random 

forests, and SVMs, while not reducing or increasing calibration error for neural networks.  

In [9], a new method for model calibration and reliability diagram generation, PL1, was 

proposed, which was shown to improve neural network calibration. 
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In this work, we use PL1 to calibrate CB trained neural networks with the aim of making 

their outputs reflect posterior probabilities.  We empirically validate this method with 

experiments on eleven classification problems and show that PL1 is able to significantly 

reduce calibration error of CB networks, making their use feasible in problem domains 

where outputting accurate posterior probabilities is important.  Calibrated CB networks 

are shown to have calibration MSE equal to CE trained networks, while also retaining 

their higher degree of accuracy. 

 

2 Calibration Methods 

 

In this section we provide a brief overview of three calibration methods for mapping 

model predictions to posterior probabilities: binning, Platt scaling and isotonic regression, 

and discuss their applicability to calibrating neural networks. 

 

2.1 Methods 

Binning [10] is a non-parametric method that can be used for mapping when the shape of 

the mapping function is unknown.  In binning, training patterns are sorted by model score 

into n bins of equal size.  Then, given a test pattern x, it is assigned a bin according to its 

model output score, which is subsequently corrected to the measured probability that x 

belongs to class c, which is the fraction of training examples in the bin that belongs to c 

(see Figure 2).  The number of bins is problem and model dependent, and must be chosen 

by cross-validation. 
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Figure 2.  Calibration by binning. 
 
 

Platt noticed a sigmoid-shaped distortion in comparing SVM outputs to predicted 

probabilities.  His method attempts to correct this distortion by passing model outputs 

through a sigmoid [5].  The sigmoid's parameters are optimized using a maximum 

likelihood estimation from a fitting training set (see Figure 3).  Fitting model outputs to a 

sigmoid has been shown to work well for some methods, but not for others, such as naïve 

Bayes [1,7]. 
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Figure 3.  Sigmoid calibration curve generated by Platt’s method. 

 
 

A more general method for calibrating predictions based on isotonic regression was 

introduced by Zadrozny and Elkan in [6,7].  This method is a non-parametric form of 

regression that can be considered an intermediary approach between binning and sigmoid 

fitting, where the only restriction is requiring the calibration curve to be isotonic 

(monotonically increasing).  A straightforward method for generating such a curve is the 

pair-adjacent violators (PAV) algorithm [11], which finds a stepwise constant solution 

(see Figure 4). 
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Figure 4.  Isotonic regression curve generated using the PAV algorithm. 
 
 
2.2 Applicability of above methods to neural network calibration 

Binning has several undesirable artifacts.  One is the necessity of choosing the number of 

bins by cross-validation.  With small and unbalanced data sets, cross-validation is likely 

to indicate a suboptimal number of bins.  Also, even when cross-validation yields a 

globally-optimal number of bins, this representation can underestimate or overestimate 

the optimal bin width for local regions of the curve.  Furthermore, the size (domain) of 

bins is fixed and the boundaries are chosen arbitrarily.  Binning gives the patterns of each 
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bin a uniform posterior estimate, which is probably an incorrect assumption.  Similarly, 

from an instance-based perspective, for test patterns lying close to bin boundaries, it does 

not follow that a point on the opposite end of the bin should be considered relevant, while 

patterns from an adjacent bin that are physically closer are discounted.  One conceivable 

way to mitigate this issue is by interpolating between bin centers to arrive at a more 

reliable probability [12]. 

 

In order to avoid introducing unwanted bias, it is generally desired for the data used for 

calibration to be separate from the data used to train the model.  In practice, this holdout 

set may be the same as the holdout set used to perform model parameter selection.  In [1], 

Niculescu-Mizil and Caruana showed that Platt scaling generally performed better than 

isotonic regression using PAV when only a small amount of calibration data is available, 

while isotonic regression usually outperformed Platt scaling with large amounts of 

calibration data. 

 

In [1], empirical tests performed by Niculescu-Mizil and Caruana showed both Platt's 

method and isotonic regression to be unsuitable for neural network calibration.  They 

explain that neural networks already produce well-calibrated probabilities when 

measured with conventional reliability diagrams, hence their reliability cannot be further 

improved.  However, in [9] it was shown that using PL1 for reliability measurement and 

calibration, it is possible to further improve neural network posteriors.  Therefore, we 

choose this method for calibrating CB trained networks in this work. 
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3 Point-wise Local Binning Calibration Method 

 

In this section we briefly present the PL1 calibration method introduced in [9]. 

 

Without loss of generality, here we assume a two-class problem, with patterns labeled 

either positive or negative.  PL1 takes a set of training patterns, T, of size N, sorted on the 

learning model’s output, o, and measures a posterior probability for each pattern.  For a 

given pattern, i∈T, with output oi, a local window, Wi, of the n ∈T closest points with 

respect to o is considered to empirically estimate the posterior, ip̂ , at model output oi by 

tallying how many patterns in this window are of the positive class.  Together, the set of 

points (oi, ip̂ ) form the plot used for recalibrating model outputs on test patterns. 

 

To calibrate a test pattern with output o, the two bounding points, L and R, on the 

calibration plot with respect to o are considered, and their p̂ values interpolated to arrive 

at a recalibrated output value, o′ , as follows: 

LR

L
LRL oo

oo
pppo

−
−

−+=′ )ˆˆ(ˆ       (1) 

For speed, in (1) we use linear interpolation, but cubic- or other forms of interpolation 

may be used by considering additional bounding points.  Pseudo-code for PL1 is listed in 

Table 1. 
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Table 1.  PL1 algorithm for estimating posterior probabilities from uncalibrated model 
predictions. 

Sort training patterns, T, according to the learning model’s output, o, on each 
pattern. 

For each pattern, i∈T, with output oi: 
Wi = the set of n points closest to oi, where 

n= class positive in the patterns # . 

Estimate posterior ip̂ = fraction of patterns belonging to the positive class 

in Wi. 
Add point (oi, ip̂ ) to the calibration plot. 

Given a test pattern with output o, let the recalibrated model output o′ = the 
interpolated p value of points bounding o on the calibration plot. 

 

For example, if the learning model outputs a value of 0.7 on a test pattern, and the points 

bounding this value on the calibration plot are (0.65, 0.5) and (0.75, 0.7), then the 

recalibrated model output would be 0.5 + (0.7 – 0.5) * (0.7 – 0.65) / (0.75 – 0.65) = 0.6. 

 

Although the calibration methods discussed in section 2 are designed for binary 

classification, multi-class problems may be considered by considering them as multiple 

binary problems, calibrating the binary models, and recombining the predictions [7]. 

 

The main advantage of this approach over the methods outlined in section 2 is that it 

makes no assumptions about how the model treats the training data.  Ramifications of this 

are described in [9]. 

 

4 Experiments 

 

Eleven well-known benchmark classification problems were selected from the UC Irvine 

Machine Learning Repository (UCI MLR) [13].  The problems were selected so as to 
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have a variety of characteristics (number of patterns, number and type of features, 

number of class labels, and complexity) in order to analyze the robustness of applying 

PL1 to CB trained networks method (see Table 2). 

 
Table 2.  Properties of benchmark data sets. 

Data set Patterns Features Classes 
ann 7200 21 3 
balance 625 4 3 
bcw 699 9 2 
derm 358 34 6 
ecoli 336 7 8 
ionosphere 351 33 2 
iris 150 4 3 
musk2 6598 166 2 
pima 768 8 2 
sonar 208 60 2 
wine 178 13 3 

 
 

Experiments were performed comparing optimized CE feed-forward multi-layer 

perceptron networks, both with and without weight decay regularization, to existing CB 

algorithms, CB1 [2], CB2 [3], and CB3 [4].  All networks had a single, fully connected 

hidden layer and were trained through on-line backpropagation.  The optimal number of 

hidden nodes was empirically determined for each task with a validation set, searching 

layer sizes within the range from one to fifty hidden nodes.  Networks had one output 

node per class (including on two-class problems).  In all experiments, network weights 

were initialized to uniform random values within the range [-0.01,0.01] [14].  The 

learning rate and momentum were optimized for each task by cross-validation.  For CE 

networks, weight decay values of λ  = 0, 0.00001, 0.00003, 0.0001, 0.0003, and 0.001 

were considered and the optimal value used for each application [15]. 
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Feature values (both nominal and continuous) were normalized between zero and one.  

Training patterns were presented to the network in a random order each epoch.  Each 

experiment was repeated ten times with a different random seed and the results averaged. 

 

Pattern classification was determined by winner-take-all (the class of the output node 

with the highest value is chosen).  Training continued until the training set was 

successfully learned or training set classification error ceased to decrease for a substantial 

number of epochs.  The model selected for test evaluation was the network on the epoch 

with the best holdout set accuracy, where the holdout set consisted of 20% of the original 

training data. 

 

Figure 2 displays 95% confidence intervals for the area under the ROC curve (AUC-

ROC) for each learning method, averaged across all experiments.  The ROC curve is used 

to measure a model’s performance when using different threshold values as the cutoff 

point for labeling patterns as positive.  AUC-ROC measures the model’s robustness to 

using cutoff values across the entire range of possible cutoff points. 
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Figure 2.  Area under the ROC curve, averaged over all experiments. 

 
 
Each method is significantly different for the others with greater than 95% confidence 

(using a reverse bar-overlaps-bar test [16]).  CB3 performs the best, having the highest 

AUC-ROC, followed by CB2 and CB1.  These ranges are nearly identical before and 

after calibration. 

 

Figures 3 and 4 show 95% confidence intervals for measured calibration mean-squared 

error (CMSE), or the average squared difference between network outputs and measured 

posteriors, before and after the calibration of test pattern outputs. 
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Figure 3. Pre-calibration MSE, averaged over all experiments. 
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Figure 4.  Post-calibration MSE, averaged over all experiments. 
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Before calibration, CB1 has a high CMSE of 0.076, which equates to a more than 26% 

inaccuracy in the posterior probability estimate on average.  CE has the best CMSE at 

about 0.01, which is a 10% inaccuracy in posterior estimation.  After calibration, the 

CMSE of all learning methods is significantly improved.  CB1 has a post-calibration 

CMSE roughly equal to pre-calibration CMSE for CB2 and CB3.  Calibrated CB3 has 

significantly lower CMSE than uncalibrated CE networks.  Calibrated CB3 and CE 

networks have a nearly identical CMSE of about 0.0055, which translates into a 7.5% 

inaccuracy in posterior estimation, on average.  Consequently, inaccuracy in posterior 

estimation for CB1 and CB3 has been decreased by more than half, and this inaccuracy is 

reduced by about 25% for CB2 and CE. 

 

5 Conclusions 

 

In this work, we applied the PL1 algorithm [9] to aid CB trained networks in outputting 

more accurate posterior probabilities.  Empirical tests on eleven classification problems 

showed that using this approach to calibrate CB networks significantly reduces their 

calibration error.  After calibration, CB1 becomes about as well-calibrated as CB2 and 

CB3 without calibration.  Calibrated CB3 networks output probability estimates that are 

on par with calibrated CE networks.  CB3 models have superior classification accuracy 

over CE networks before and after calibration, which suggests the use of calibrated CB3 

networks for problem domains where high accuracy and accurate probability estimation 

is desired. 
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Abstract.  Artificial neural networks provide an effective empirical predictive model for 

pattern classification.  However, using complex neural networks to learn very large 

training sets is often problematic, imposing prohibitive time constraints on the training 

process.  We present four practical methods for dramatically decreasing training time 

through dynamic stochastic sample presentation, a technique we call speed training.  

These methods are shown to be robust to retaining generalization accuracy over a diverse 

collection of real world data sets.  In particular, the SET technique achieves a training 

speedup of 4278% on a large OCR database with no detectable loss in generalization. 

 

1 Introduction 

 

Artificial neural networks have received substantial attention as robust learning models 

for tasks including classification [5].  Much research has gone into improving their ability 

to generalize beyond the training data.  Many factors play a role in their ability to learn, 

including network topology, learning algorithm, and the nature of the problem at hand.  
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In particular, the measure to which the training set represents the underlying distribution 

influences ultimate classification accuracy.  Overfitting the training data is often 

detrimental to generalization.  In theory, amassing an infinite training set would provide 

an exact measure of test accuracy (complete representation of the data distribution) and 

discourage overfitting.  Hence, it is desirable to incorporate as large a training set as 

possible into the learning phase.  However, training on very large data sets is 

problematic, as training time tends to increase more than linearly with the size of the 

training set [3].  The time required to converge on large data sets can be prohibitive.  We 

provide four novel learning approaches that have shown to decrease training time by over 

an order of magnitude on very large data sets.  Notably, the SET method achieves a 

training speedup of up to 4278% on the data tested with no detectable loss in 

generalization. 

 

We give an overview of related work in section 2 and present four novel methods for 

speed training in section 3.  Experiments are described in section 4.  Results and analysis 

are given in section 5, followed by further work in section 6 and conclusion in section 7. 

 

2 Related work 

 

There have been many algorithms used to speed up the training of backpropagation 

neural networks, most of which are gradient descent “optimizing” algorithms.  Two 

noteworthy approaches are QuickProp [2] and RProp [4].  QuickProp introduces a new 

error function, weight decay, and an alternative momentum equation.  RProp uses an 
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exponentially adaptive step size for each parameter in the network [7].  These techniques 

allow quicker convergence.  However, little research has involved how the nature and 

size of the training set affects the training speed and resultant generalization.  Zhang [9] 

creates a training set by selecting only critical examples and then expands this set if 

necessary for proper convergence. 

 

A simpler method of improving generalization through reducing overfitting is to provide 

a maximum error tolerance threshold, dmax, which is the smallest absolute output error to 

be back propagated  [6].  In other words, for a given dmax, target value, tj, and network 

output, oj, no weight update occurs if the absolute error | tj – oj | < dmax.  This threshold is 

arbitrarily chosen to represent a point at which a sample has been sufficiently 

approximated.  With an error threshold, the network is permitted to converge with much 

smaller weights, translating to a reduction in overfitting. 

 

When class data is unbalanced, techniques such as sub-sampling and re-sampling the 

training data can provide a way to reduce training time and improve generalization on the 

less represented classes [3].  Along with these techniques, Owens trains a committee of 

networks, each network learning from a distinct (balanced) subset of the training data.  

However, while this can improve training time and generalization, it results in a much 

more complex solution involving several networks instead of one.  This technique’s 

training time is reduced at the expense of testing time.  In problem domains where a large 

amount of high-dimensional data is being classified, such solutions introduce a new 

problem by slowing down classification. 
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3 New approaches 

 

Our proposed methods differ from Zhang’s and Owens’ in two main respects.  First, we 

use a stochastic data selection mechanism based solely on the network’s ability to learn 

the given data rather than statistical approaches focusing on feature redundancy.  Second, 

whereas Zhang only adds more examples with time and does not allow them to be 

removed from the training set and Owens selectively determines the data as a step 

preliminary to training, we provide a temporally dynamic stochastic data inclusion 

mechanism that presents samples to the network according to present learning need.  

These differences are based on inferred feature correlation and data replication (identical 

or almost-identical samples) existing in artificial and real world data sets.  Equivalent 

generalization is achieved in less time without increasing the complexity of the network. 

 

Rather than initially selecting a small subset of the training data to present to the network 

during training, the network retains access to all data samples during the training process.  

Sample presentation is determined exclusively by the ability of the network to learn the 

data.  These methods result in a large reduction in training time through selectively 

“pruning” correctly classified samples from the training set to exclude their (redundant) 

presentation to the network each epoch.  In other words, only the samples currently 

affecting the learning process are presented.  We refer to this method of reducing training 

time through selective sample presentation as speed training. 
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3.1 Error based presentation (Error Based) 

Each sample from the training data is presented to the network during the first epoch.  

The output error of the net for each sample is recorded.  In subsequent epochs, samples 

are stochastically presented to the network based on the previous amount of error, where 

the error translates to the probability of subsequent presentation.  That is, the probability 

of a sample, xi, being presented on the following epoch is equal to its absolute training 

error (a value between 0 and 1), or formally, 

 

 P(xi) = 
O

oti || −
                    (1) 

 

where ti is the sample’s target value, o is the net output, and || O || is a normalization 

factor describing the range of the activation function (e.g., 1 for a standard sigmoid 

function). 

  

Therefore, samples already learned to a high degree of accuracy are rarely presented to 

the network, while samples with a high error are presented more often.  This approach 

provides a mechanism to progressively speed up training as the network converges by 

bypassing unneeded examples (those that do little to update the network parameters) and 

focusing on the more difficult parts of the problem. 

 

3.2 Stochastic presentation with error threshold (SET) 

An error tolerance threshold, dmax, is incorporated so that network weights are only 

updated on samples that output an error greater than this threshold (as described in 
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Section 2).  The probability of presenting a sample to the network is proportional to how 

close the sample is to overstepping the threshold.  Formally, 

 

 P(xi) = 





 <−
−

otherwise1

||if
||

max
max

dot
d

ot
i

i

 

 

This crudely equates to the probability the sample has of affecting the network 

parameters.  Thus, samples with error far below the threshold will be seen rarely, while 

samples closer to the threshold will be seen often to maintain their correctness.  This 

effectively bypasses samples that do not affect the performance of the network.  Note that 

this method is more “conservative” than equation (1), skipping fewer samples on average. 

 

3.3 Skip when correct (n-SKIP) 

When the network classifies a sample correctly for n epochs, do not present it again for n 

epochs: 

 

P(xi) = 






 ∧

otherwise1

)epochs last  than less skipped(    

)correct epochs last ( if0

n

n

 

 

where n is a parameter and “skipped” is when xi is not presented during an epoch; we 

define “correct” as error within dmax for the experiments presented below.  These 

parameters are determined by the problem at hand, and can include the network 

outputting in a range of values (e.g., above 0.6 or according to winner-take-all).  The 
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intuition behind this method is that when the network incorrectly classifies a sample, it 

will probably incorrectly classify it again.  Conversely, when the network is consistently 

correct on a sample, it will probably be correct again, and can therefore be skipped 

without adversely affecting the training process with high probability. 

 

The tendency is that the more data there are, even when some samples are skipped, there 

will exist neighboring samples (closer to the decision surface) that are not skipped.  This 

serves to keep the decision surface “in line” in the temporary absence of sample points.  

Re-including a sample after n epochs provides a quick check that the sample is still being 

classified correctly, and then if it is still correct it is skipped for another n epochs.  The 

larger the value of n, the greater the speed up will be on large data sets, with the greater 

risk of samples falling “out of line” during their absence from several training epochs.  

This might result in greater deviation from standard training, but does not necessarily 

translate to a loss in generalization accuracy. 

 

3.4 Stochastic presentation based on correctness history (Correct Ratio) 

The probability of not presenting a sample is the ratio of the number of epochs for which 

it is correctly classified to the total number of epochs.  We implement the probability of 

presentation through the formula 

 

 P(xi) = 
epochs#

correct epochs#
1−               (2) 

 



www.manaraa.com

Chapter 9. Speed Training: Improving the Rate of Backpropagation Learning 
through Stochastic Sample Presentation 

 208 

where # epochs includes the current epoch (so that there is always a chance for 

presentation).  The more often a sample is classified correctly the less often it is 

presented.  For our experiments, we did not consider a sample correctly classified when 

skipped.  This conservatively avoids skipping samples more and more often with time 

without justification.  Other variants are possible and are discussed in section 8. 

 

3.5 Resource Requirements 

For the above methods, additional resource requirements are modest, limited to O(n) in 

both space and time over the number of samples. 

 

4 Experiments 

 

To measure the speedup achieved through these approaches as well as validate their 

integrity we tested them on various problem domains, from small toy problems to very 

large real world data sets. 

 

4.1 Data sets 

1. 4-AND.  A small “toy” problem (although it certainly can appear in real data) 

consisting of a 4-input AND function with 16 samples that completely cover the problem 

space. 
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2. Breast cancer Wisconsin (bcw).  A medium-sized real world problem taken from the 

UCI Machine Learning Repository [8], consisting of nine input attributes, one binary 

output, and 549 patterns, randomly split into 439 training patterns and 110 test patterns. 

 

3. OCR.  A very large set of machine printed alphanumeric characters used for OCR.  It 

consists of over 495,000 samples, randomly split into roughly 415,000 training samples 

and 80,000 test samples.  For training, each sample was normalized onto an 8x8 grid, 

resulting in 64 inputs.  We trained a network to distinguish each character, but for 

simplicity only the results for the character “a” (a typical category with about 15,000 

samples) are presented here. 

 

4.2 Learning parameters 

We used fully connected feed-forward neural networks trained through standard on-line 

backpropagation (minimizing SSE) for all experiments.  For learning the 4-AND, breast 

cancer, and OCR problems the network contained a single hidden layer comprised of 4, 

5, and 32 hidden nodes, respectively.  Weights were initialized to uniform random values 

in the range [-0.3,0.3].  For a given data set, the same initial weight values were used for 

all training runs.  We used a learning rate of 0.2, momentum of 0.5, and error threshold 

(dmax) of 0.1 in all experiments presented here.  Training was stopped when no samples 

were classified incorrectly on 4-AND, and when a maximum number of epochs was 

reached (1000 for breast cancer and 500 for OCR). 
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5 Results and analysis 

 

Tables 1-3 display the results of each data set.  Epochs is the number of epochs until 

convergence.  Samples is the total number of samples presented to the network during the 

training run.  Time is real training time in seconds.  % SpdUp is the speedup in training 

time over the standard method, in percent.  Train is the final training set accuracy (above 

0.5 for positive samples, below 0.5 for negative samples) in percent.  Train MSE is the 

mean squared error for the training set at convergence.  Test is the test set accuracy in 

percent.  Test MSE is the mean squared error for the test set.  Best values for each column 

are in italics. 

 

The Error Based presentation technique results in the greatest training speed up in 

general, from a 78% increase in speed on breast cancer to a 4487% speed up on OCR.  

Of all four methods, this one prunes samples most aggressively.  This is at the expense of 

a slight decrease in generalization accuracy compared to standard sample presentation. 

Speed up on breast cancer is not as great as on other sets because the MSE is higher on 

this data set.  Higher average error causes samples to be presented more often during 

Error Based presentation. 
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Table 1.  Results on 4-AND. 
M e t h o d Epochs Samples T i m e % SpdUp Train  Train MSE  T e s t Test MSE 
Standard 1499  23984 0.047 N/A 100.0 0.0313 
Error Based 559   3126 0.016 193.75 100.0 0.0945 
SET 1495  12539 0.032 46.88 100.0 0.0313 
3-SKIP 1165   7122 0.032 46.88 100.0 0.0609 
6-SKIP 1325   8289 0.032 46.88 100.0 0.0409 
9-SKIP 1464   9333 0.032 46.88 100.0 0.0326 
Correct Ratio 1502  11092 0.032 46.88 100.0 0.0313 

N/A N/A 

 
 

Table 2.  Results on bcw. 
M e t h o d Epochs Samples T i m e % SpdUp Train  Train MSE  T e s t Test MSE 
Standard 439000  1.281 N/A 94.76 0.0947 90.91 0.1293 
Error Based 137990  0.719 78.16 97.04 0.1076 88.18 0.1478 
SET 201248  0.859 49.13 94.76 0.0949 90.91 0.1291 
3-SKIP 84959  0.484 164.67 94.76 0.1289 90.91 0.1611 
6-SKIP 92423  0.515 148.74 94.99 0.1335 90.00 0.1726 
9-SKIP 95770  0.531 141.24 95.22 0.1239 90.00 0.1618 
Correct Ratio 

1000 

120293  0.640 100.15 95.22 0.1129 90.00 0.1544 
 
 

Table 3.  Results on OCR. 
M e t h o d Epochs Samples T i m e % SpdUp Train  Train MSE  T e s t Test MSE 
Standard 207100000 8527.946 N/A 99.99 0.0002 99.96 0.0006 
Error Based 939790 185.898 4487.43 99.96 0.0011 99.93 0.0014 
SET 1188387 194.773 4278.40 100.00 0.0002 99.97 0.0005 
3-SKIP 52760243 2312.724 268.74 100.00 0.0002 99.96 0.0006 
6-SKIP 31710579 1401.750 508.38 100.00 0.0002 99.95 0.0006 
9-SKIP 24262191 1114.810 664.97 100.00 0.0002 99.96 0.0006 
12-SKIP 20566468 942.520 804.80 100.00 0.0002 99.96 0.0006 
18-SKIP 18116504 854.524 897.98 100.00 0.0002 99.97 0.0005 
24-SKIP 18161186 857.508 894.50 100.00 0.0002 99.96 0.0006 
Correct Ratio 

5 0 0 

4378508 328.290 2497.69 99.99 0.0005 99.94 0.0010 
 
 

SET proves superior in terms of accuracy, generalizing equally well or better than 

standard training on all three data sets.  It is more conservative than Error Based in 

choosing what samples to exclude, hence yields slightly slower training.  It still improves 

training time by 4278% on OCR.  In other words, training on this large data set is 
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performed in less than 2.3% of the standard time required.  This translates to a drop in 

training time over one-and-a-half orders of magnitude, from hours to minutes (see 

Figures 1 and 2). 

 

All variants of n-SKIP produced roughly equivalent results in generalization compared to 

standard training.  They achieve a speed up roughly proportional to their n factor on large 

data sets.  On fewer data, smaller n perform better.  3-SKIP learns breast cancer the 

quickest of all methods tested.  18-SKIP generalizes as well as SET on OCR, although it 

does not display as marked a decrease in training time (since 18 full epochs must occur 

before any samples are pruned). 

 

Correct Ratio achieves higher accuracy and is faster on breast cancer than Error Based, 

although it is 76.6% slower on OCR.  It is only slightly worse in generalizing than 

standard training.  Its training time is roughly the median over all four methods on these 

data sets.  As training continues, this technique tends to prune more and more samples.  

The percent of samples pruned per epoch is equivalent to the training set accuracy in the 

limit. 
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Figure 1.  Training time per epoch (log scale) on OCR with SET (darker) vs. standard 

training. 
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Figure 2.  Samples presented per epoch (log scale) on OCR with SET (darker) vs. 

standard training. 
 
 

6 Further Work 

 

Further efforts will combine speed training with other “optimized” backpropagation 

algorithms (e.g., Quickprop and RProp).  Together, it is conceivable that they will speed 

up convergence as well as reduce time spent per epoch in sample presentation. 
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Extending speed training to other iterative learning models, where the effectiveness or 

need of sample presentation varies over time, will also be studied.  In particular, speed 

training will be tested with batch learning, where training time is very slow and epoch 

speed up is extremely desirable. 

 

In addition to speeding up training, presenting samples with the most error more often 

may in general discourage overfitting.  As proposed in [1], generalization is affected most 

by the size of the network parameters.  When learning continues until weight saturation, 

generalization can be compromised.  Excluding well-learned samples from further 

training can be a mechanism for keeping weights small, thereby improving generalization 

over techniques that saturate weight parameters.  The usefulness of this principle will be 

investigated. 

 

Several variations exist on the four methods proposed here.  For example, when a sample 

is excluded from presentation on a given epoch, the probability that it will be presented in 

subsequent epochs can be gradually increased by a nominal value.  This provides a more 

conservative approach to stochastic data exclusion, not allowing samples to be removed 

from training for too long. 

 

Similarly, the way skipped samples affect sample presentation probability in Correct 

Ratio can be incorporated by extending equation (2) as follows: 

 

 P(xi) = 
epochs#

skipped) epochs(# correct  epochs#
1

α+−  
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where α, ranging from zero to one, provides a pruning “aggressiveness” factor.  For α 

approaching zero, skipping a sample increases the probability of presentation in 

subsequent epochs.  This conservative approach reflects our experiments conducted here.  

For α close to one, skipping a sample gradually reduces the probability of subsequent 

presentation, a more aggressive pruning model.   

 

Another improvement is to automate the choosing of n in n-SKIP in order to reduce 

training time as much as possible without requiring repeat training runs.  An extension to 

this would be to dynamically alter the value of n during the training process to encourage 

further speedup. 

 

Furthermore, the value from which P(xi) is derived in Error Based, SET, and Correct 

Ratio speed training can be augmented by a scaling factor to provide more conservative 

or aggressive sample pruning.  However, a non-linear function of error to P(xi) is more 

general and may prove more effective.  Investigation of these modifications will be 

presented in future work. 

 

In the experiments presented here, no parameter optimizations were performed; 

commonly used, standard parameter values were incorporated for learning rate, 

momentum and error threshold.  Work will be done to observe the effect of modifying 

these parameters on the time and accuracy of these speed training techniques. 
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7 Conclusion 

 

Speed training provides an alternative to standard sample presentation in neural network 

training.  It is a viable solution to overcoming prohibitive training costs in learning very 

large data sets with complex networks, and is an alternative to techniques such as 

subsampling [3] to reduce training time.  It has proven effective on a variety of data sets 

with vastly different properties.  Training time is reduced by roughly an order of 

magnitude and generalization is preserved. 

 

A major weakness of standard backpropagation neural network learning is its slow 

training speed.  Any of the proposed stochastic sample presentation schemes are 

appropriate if rapid training speeds are required while a very minimal drop in accuracy is 

acceptable.  If accuracy is paramount, then conservative sample exclusion techniques, 

such as SET, provide dramatic speedup with no detectable loss of accuracy. 

 

References 

 

[1] Bartlett, Peter L., “The Sample Complexity of Pattern Classification with Neural 

Networks: The Size of the Weights is More Important than the Size of the Network”, 

IEEE Trans. Inf. Theory, 44(2), 1998, pp. 525-536. 

 



www.manaraa.com

Chapter 9. Speed Training: Improving the Rate of Backpropagation Learning 
through Stochastic Sample Presentation 

 217 

[2] Fahlman, S.E., “Faster-learning Variations on Back-propagation: An Empirical 

Study”, Proceedings of the 1988 Connectionist Models Summer School, Morgan 

Kaufmann. 

 

[3] Owens, Aaron J., “Empirical Modeling of Very Large Data Sets Using Neural 

Networks”, International Joint Conference on Neural Networks 2000, vol. 6, pp. 6302-

10. 

 

[4] Riedmiller, Martin and Braun, Heinrich, “A Direct Adaptive Method for Faster 

Backpropagation Learning: The RPROP Algorithm”, Proceedings of the IEEE 

Conference on Neural Networks, San Francisco, 1993. 

 

[5] Rumelhart, David E., Hinton, Geoffrey E. and Williams, Ronald J., Learning Internal 

Representations by Error Propagation, Institute for Cognitive Science, University of 

California, San Diego; La Jolla, CA, 1985. 

 

[6] Schiffmann, W., Joost, M. and Werner, R., “Comparison of Optimized 

Backpropagation Algorithms”, Artificial Neural Networks, European Symposium, 

Brussels, 1993. 

 

[7] Schiffmann, W., Joost, M. and Werner, R., “Optimization of the Backpropagation 

Algorithm for Training Multilayer Perceptions”, University of Koblenz: Institute of 

Physics, 1994. 



www.manaraa.com

Chapter 9. Speed Training: Improving the Rate of Backpropagation Learning 
through Stochastic Sample Presentation 

 218 

 

[8] University of California, Irvine, Machine Learning Repository. 

http://www.ics.uci.edu/~mlearn/MLRepository.html 

 

[9] Zhang, Byoung-Tak, “Accelerated Learning By Active Example Selection”, 

International Journal of Neural Systems, 5(1), Germany, 1994, pp. 6775-79. 

 



www.manaraa.com

 

 219 

Chapter 10 

Conclusion and future work 

 

Three classification-based algorithms for ANN learning, CB1-3, have been presented and 

evaluated on several applications under a variety of learning conditions.  CB1 was shown 

to perform significantly better than conventional SSE and CE error functions on several 

small- to medium-sized benchmark data sets, on a large OCR data set, and on the 

TIDIGITS corpus as part of a speech recognition system.  CB2 was shown to have higher 

average classification accuracy than CB1, although the increase was not significant (p = 

0.05).  However, CB2 was observed to have significantly higher generalization when 

measuring the area under the ROC curve (AUC-ROC), lower variance in results and 

lower sum-squared error than CB1.  CB3 was shown to be significantly superior to CB1, 

CB2, SSE and CE, with and without weight decay, on the data sets tested with respect to 

classification accuracy and AUC-ROC.  CB3 was also shown to be most robust to the 

size of the network, learning parameters, and convergence criteria.  Network models 

trained with CB1-3 were demonstrated to have lower average weight magnitude for each 

layer of the network than training with SSE or CE while converging in a comparable 

number of training epochs. 

 

PL1, a point-wise local binning method for model calibration, was proposed and applied 

to calibrating ANNs and other machine learning models.  It was shown to be more 

effective than isotonic regression, a state-of-the-art calibration method, in improving 

neural network posteriors.  A subsequent study showed PL1 calibration of CB-trained 



www.manaraa.com

Chapter 10. Conclusion and future work 

 220 

networks to be highly effective in reducing posterior estimation error.  Calibrated CB3 

networks were measured as being as precise as calibrated networks trained to optimize 

CE. 

 

There are other ways to apply CB training techniques.  Empirical tests showed that 

pattern misclassifications are not highly correlated among the various error functions.  

This observation invites study into the practical application of combining networks 

trained with various error functions into hybrid ensembles.  It is expected that this will 

further improve generalization with respect to a variety of goodness metrics over both 

stand-alone models and homogeneous ensembles. 

 

It is also worthwhile to study the efficacy of using more than one global objective 

function in the training of a network.  One example of this is to train a model to optimize 

with respect to one metric and then continue optimizing with respect to another.  CB-

trained networks were shown to avoid pre-mature weight saturation and converge with 

significantly lower weight magnitudes than SSE- and CE-trained networks.  In some 

cases, the trained network has weight magnitudes not much larger than the initial 

untrained network.  We have considered first training a network with CB3, selecting the 

best model epoch with a validation set, and then training that model to optimize SSE or 

CE.  Beginning SSE or CE training in a state of high accuracy and low network weights 

can preempt the possibility of converging to less-optimal local minima while retaining 

the possibility of further improving the network’s accuracy.  Preliminary results on 

benchmark data sets are encouraging. 
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Another conceivable method of training with more than one error function is to learn 

different portions of a problem domain with different cost functions.  Local regions of a 

problem’s feature space may be learned more accurately when optimizing with respect to 

one error function than another.  In this case, it may be better to trade optimizing a single, 

global error function in favor of optimizing with respect to different error functions in 

local, distinct regions of the problem space.  CB3 does this in some measure by altering 

the strength of the error signal backpropagated through the network based on the 

network’s ability to learn training patterns, but more direct approaches may be useful in 

providing better human understanding of a problem. 

 

Another way to divide a problem into separate learnable regions is semantically, by 

concept class.  In multi-class problems, certain classes may better be learned by some 

model representations than by others.  This would probably be most apparent in complex 

problems with a high number of classes, such as an OCR, document identification, or 

speech recognition system.  Developing approaches for semantically grouping problem 

classes according to their ability to be learned when optimizing with respect to various 

error functions could prove useful to formulating more structured problem 

representations, thereby facilitating the implementation of mechanisms for more effective 

learning. 
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Abstract.  This paper studies the performance of standard architecture selection 

strategies, such as cost/performance and CV based strategies, for voting methods such as 

bagging. It is shown that standard architecture selection strategies are not optimal for 

voting methods and tend to underestimate the complexity of the optimal network 

architecture, since they only examine the performance of the network on an individual 

basis and do not consider the correlation between responses from multiple networks. 

 

1 Introduction 

 

There are several well-known methods for combining the predictions of multiple 

classifiers in order to obtain a single prediction. These include Bayesian methods [16], 

bagging [6], boosting[13], and other voting methods [19]. However, little work has been 

done on the problem of model selection when using these methods. This paper examines 

the problem of selecting an appropriate neural network architecture when using bagging 

and other voting methods to combine the predictions of multiple neural networks. We 
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show that standard architecture selection strategies do not always select optimal neural 

network architectures for such methods. 

 

Section 2 discusses voting methods and the problem of selecting an optimal network 

architecture for such methods.  Section 3 discusses related work in the field of 

architecture selection.  Section 4 gives experimental results, and section 5 gives the 

conclusion. 

 

2 Architecture Selection for Voting Methods 

 

Neural network architecture selection strategies studied in the literature have focused on 

choosing the single best performing architecture from a group of architectures, generally 

using some kind of cost/performance tradeoff or the performance of the network on a 

holdout set as the selection criteria. Under certain assumptions, these architecture 

selection criteria can be shown to be optimal. However, such performance measures are 

only optimal in the case where a single network is to be used as the final predictor, and 

are not optimal for the architecture selection problem when using bagging or other voting 

methods to combine the predictions of several neural networks. From a Bayesian 

standpoint, the optimal prediction is obtained by calculating a weighted average of all 

possible network architectures and all possible weight settings for those architectures, 

where each network is weighted by its posterior probability. From a purely Bayesian 

standpoint, any architecture selection strategy which chooses a single network 
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architecture using a cost/performance tradeoff is sub-optimal, since it entirely ignores a 

large number of possible architectures that could significantly impact the solution.   

 

Obviously, the calculation of this weighted average is computationally infeasible; 

however, the optimal prediction can be approximated in a number of different ways. 

Bagging, which can be viewed as an approximation to the Bayes optimal solution, 

generates a prediction by calculating a weighted average of several predictors. With 

bagging, the weight is usually set to 1 for each predictor, which amounts to the 

assumption that all of the predictors are equally probable from a Bayesian standpoint. 

This assumption is not unreasonable since the predictors are often not likely to greatly 

differ in their posterior probabilities, and it may be difficult to accurately estimate the 

true, relative a-priori probabilities. 

 

Bagging and other voting methods work best when the errors between the various 

predictors are uncorrelated, and the correct responses between the predictors are 

correlated. Generally speaking, very simple predictors tend to have both correlated errors 

and correlated correct responses. For example, one of the simplest ways to formulate a 

predictor is to always predict the majority class of the training set. Obviously, using 

multiple such predictors cannot increase classification accuracy, since the errors (and 

correct responses) of such predictors are 100 percent correlated. As the complexity of the 

predictors is increased, the correlation between the responses of the predictors tends to 

decrease.  This is because with increasing complexity there is a corresponding increase in 
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the number of different solutions (minimum error for the training set) that the predictor 

can produce. 

 

Since bagging and other voting methods work best when the correct responses between 

predictors are correlated and the incorrect responses are uncorrelated, when bagging or 

other voting methods are used to combine the results of multiple networks the goal for 

neural network architecture selection is to choose the network architecture that 

maximizes the correlation between multiple trained copies of the network when the 

networks are producing the correct response, and minimizes the correlation between the 

networks on incorrect responses. So, the network architecture which maximizes a 

cost/performance tradeoff, or even that performs the best on a holdout set, is not 

guaranteed to be the best architecture for bagging, since it does not examine this 

correlation. 

 

 

There are a number of factors that can influence the choice of the appropriate network 

architecture for voting methods such as bagging. These include but are not limited to: 

 

• Number of bagged predictors 

• Number of training examples 

• Underlying problem domain 

• Idiosyncrasies of the training algorithm 
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For example, lowering the number of training examples is likely to require lowering the 

complexity of the network architecture in order to achieve optimal performance. It is also 

possible that increasing the number of predictors “in the bag” may allow for a 

corresponding increase in the complexity of the network architectures being bagged. 

 

3 Related Work in Architecture Selection 

 

There have been a number of different architecture selection strategies studied in the 

literature. These strategies are all ultimately based on either the use of a holdout set or a 

cost/performance tradeoff to determine the ‘optimal’ network architecture. These 

strategies include the following: 

 

Network Construction Algorithms 

The majority of network construction methods start from a very simple basis, usually one 

node, and add nodes and connections as needed in order to learn the training set. These 

strategies include Cascade Correlation [8], DNAL [4], Tiling [14], Extentron[3], 

Perceptron Cascade [7], the Tower and Inverted Pyramid algorithms [10], and DCN [17]. 

Other construction algorithms include Meiosis [11] and node splitting (Wynne-Jones 

1992). 

 

One of the drawbacks of most current MLP construction algorithms is that they do not 

have built in mechanisms to prevent the network from overlearning, rather treating this 

important subject as an afterthought. For example, Burgess states that "for good 
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generalization it is necessary to restrict the size of the network to match the task," [7] but 

no specific algorithm is presented on how to do so. Left uncontrolled, all of these 

methods will suffer from over learning, and so in some respects they do not avoid the 

architecture selection problem but must utilize some type of architecture selection 

strategy (such as CV or MDL based strategies) in an attempt to avoid over learning. This 

is due to the fact that, left uncontrolled, the network structure can grow to fit the training 

set data exactly. But with many problems the training data may contain noise that will 

cause the algorithm to perform worse if the noisy instances are memorized. Also, the 

network can grow to the point that the amount of training data is insufficient to properly 

constrain the network weights. 

 

Early Stopping 

Early stopping strategies [1,9,18,23] utilize overly complex network architectures. One of 

the main advantages of using a network that is more complex than is actually needed is 

that larger networks tend to have fewer local minima in the error surface. However, with 

a larger network there is a higher likelihood that over learning will occur. In other words, 

larger network architectures are more likely to converge to a lower training set error, but 

often tend to produce higher error on non-training examples.  In order to avoid this, early 

stopping strategies try to determine when the network has been trained sufficiently to do 

well on the problem but has not yet over learned (or memorized) the training data. One 

way to do this is to occasionally test the performance of the network on a holdout set and 

stop training when the performance on the holdout set begins to degrade. 
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Cross Validation (CV) 

CV is often used to select an optimal architecture from amongst a set of available 

network architectures. In a comparison of CV with two other MLP architecture selection 

strategies in a recent paper [20] CV was found to be the best at choosing the optimal 

network architecture, at least on the data sets tested. However, the comparison was based 

on only a single type of artificial data and did not look at any real world problem 

domains. 

 

In a larger study CV was found to not perform well when selecting an optimal 

architecture from a large set of relatively similar architectures [2]. Several strategies are 

suggested which can be applied when using CV based MLP architecture selection to 

significantly improve the performance CV based architecture selection. 

 

Weight Decay 

Weight decay adds a penalty term to the error function that favors smaller weights [5, 

12].  The rate of weight decay is often chosen by training several different networks with 

different rates of decay and then using CV to estimate which rate is optimal. 

 

Network Pruning 

Pruning techniques start with an overly large network and iteratively prune connections 

that are estimated to be unnecessary. CV is often used to assist in the estimation process. 

The pruning can take place during the training process or training cycles can be alternated 
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with pruning cycles. Pruning strategies include Optimal Brain Damage [21], 

Skeletonization [15], and Optimal Brain Surgeon [22]. 

 

4 Experiments and Results 

 

Experiments were conducted several data sets in order to empirically determine the 

efficacy in cost/performance tradeoff and CV based methods in determining the optimal 

network architecture for bagging. The real world data sets were obtained from the UC 

Irvine machine learning database repository. 

 

 

Figure 1.  Breast Cancer Wisconsin and Bagging. 
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For the results reported in this paper the complexity level of the tested network 

architectures ranges from 2 to 20 hidden nodes arranged in a single hidden layer of a fully 

connected network. In order to determine the best architecture for bagging, 30 sets of 

network weights are trained for each complexity level in this range, and the performance 

of the 30 bagged networks is evaluated for each of the network architectures. The 

performance and complexity level of the best architecture for bagging is then compared 

against bagging’s performance and complexity level using the network architecture 

chosen by Akaike’s information-based criterion (AIC), and with the architecture selected 

by CV. 

 

Figure 1 shows the test set results of the bagged networks for each of the network 

architectures tested on the Breast Cancer Wisconsin data set.  This data set is interesting 

because it shows a significant general upward trend in test set accuracy as the complexity 

of the bagged networks is increased. However, there is not a significant upward trend in 

the test set scores of the networks taken individually (nor in the training set scores), as 

can be seen in figure 2. Because of this, architecture selection strategies which only 

examine the performance of the individual networks, such as most cost/performance 

measures and also CV based measures, are unlikely to find the optimal architecture for 

bagging for this particular problem. Indeed, for this particular problem the AIC measure 

chooses the simplest network architecture, which has a bagged network performance 

which is significantly worse than the best performance of the tested architectures (95.9% 

vs. 96.9% on the test set). 
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Figure 2.  Breast Cancer Wisconsin - no Bagging. 

 

Figure 3 shows the test set performance of AIC vs. CV for selecting the network 

architecture for bagging, and compares this against the ‘optimal’ network architecture for 

bagging. On average, the AIC criteria is significantly worse than using CV to choose an 

architecture for bagging, and both generally fail to pick the optimal network architecture 

for these problems. 
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Figure 3.  AIC vs. holdout vs. optimal test set accuracy. 

 

Both AIC and CV significantly underestimate the complexity of the best architecture for 

bagging for these problems, as can be seen in figure 4, with AIC on average choosing a 

network with 4 hidden nodes and CV choosing an architecture with 6 hidden nodes, with 

the optimal network architecture for bagging containing (on average) 14 hidden nodes. 
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Figure 4.  Average complexity of chosen architecture for each problem. 

 

5 Conclusion 

 

The experimental results show that, for the problems tested in this paper, the optimal 

network architecture for bagging (and by extension other voting methods) is more 

complex than the network architecture chosen by cost/performance tradeoff methods such 

as MML and MDL, and also more complex than the network architecture chosen by CV 

based methods which only examine the performance of individual networks. We have 
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argued that this empirical result will hold for most learning problems, since these 

strategies are only designed to identify the optimal network architecture if a single 

network will be used as the final predictor. When multiple networks are combined using 

a voting method, then these strategies tend to underestimate the complexity of the optimal 

network architecture since they cannot estimate the degree to which the responses of the 

different network architectures will be correlated, and this estimate is critical in the 

determination of the optimal network architecture for voting methods. 

 

The factors which may affect the optimal complexity for bagging and other voting based 

methods include the number predictors that will be voted, the number of training 

examples, the underlying problem domain, and idiosyncrasies of the training algorithm. 

Future work will focus on studying the effects of each of these factors, as well as 

developing a systematic methodology for selecting the optimal network architecture for 

voting methods. 
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Abstract.  Often the best artificial neural network to solve a real world problem is 

relatively complex. However, with the growing popularity of smaller computing devices 

(handheld computers, cellular telephones, automobile interfaces, etc.), there is a need for 

simpler models with comparable accuracy. The following research presents evidence that 

using a larger model as an oracle to train a smaller model on unlabeled data results in 1) a 

simpler acceptable model and 2) improved results over standard training methods on a 

similarly sized smaller model. On automated spoken digit recognition, oracle learning 

resulted in an artificial neural network of half the size that 1) maintained comparable 

accuracy to the larger neural network, and 2) obtained up to a 25% decrease in error over 

standard training methods. 

 

1 Introduction 

 

As Le Cun, Denker, and Solla observed in [1], often the best artificial neural network 

(ANN) to solve a real-world problem is relatively complex. They point to the large ANNs 

Waibel used for phoneme recognition in [2] and that of Le Cun et al. with handwritten 

character recognition in [3]. “As applications become more complex, the networks will 

presumably become even larger and more structured.” [1] The growing complexity of 
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neural networks in real-world applications presents a problem when using them in 

environments with less available memory and processing power (i.e. embedded systems 

like handheld computers, cellular telephones, etc.). Therefore, there is a demand to create 

smaller, faster, neural networks that still maintain a similar degree of accuracy. The 

oracle learning solution involves using the most accurate available model as an oracle to 

train a smaller model. We propose that oracle learning will result in simpler models that 

1) have accuracy comparable to their oracles, and 2) have improved results over standard 

training methods for the same sized model. For the following experiment, simple feed-

forward single-hidden layer ANNs were used as both the oracle and the oracle-trained 

network (OTN). We propose the use of the following nomenclature for classifying OTNs 

within this paper: 

 

OTN (n à  m) 

 

Reads “an OTN approximating an n hidden node ANN with an m hidden node ANN.” 

For example: 

 

OTN (200 à  100) 

 

Reads “an OTN approximating a 200 hidden node ANN with a 100 hidden node ANN.” 

The rest of the paper describes oracle learning in terms of ANNs since the experiments 

deal solely with ANNs. We refer to the oracle as an oracle ANN (which is no different 

than a standard ANN, it is just used as an oracle). 
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One of the advantages of using an ANN as an oracle is the ability to use unlabeled 

training data to train smaller ANNs. In speech recognition, for example, there are more 

than enough data, but it is difficult and expensive to hand label them at the phoneme 

level. However, if an oracle ANN exists, the smaller ANN can theoretically request as 

many labeled data points as is necessary to best approximate the larger or oracle ANN. 

 

The idea of approximating a more complex model is not entirely new. Domingos used 

Quinlan’s C4.5 decision tree approach from [4] in [5] to approximate a bagging ensemble 

and Zeng and Martinez used an ANN in [6] to approximate a similar ensemble (both 

using the bagging algorithm Breimen proposed in [7]). Craven and Shevlik used a similar 

approximating method to extract rules [8] and trees [9] from ANNs. Domingos and 

Craven and Shevlik used their ensembles to generate training data where the targets were 

represented as either being the correct class or not. Zeng and Martinez used a target 

vector containing the exact probabilities output by the ensemble for each class. The 

following research also used vectored targets similar to Zeng and Martinez since Zeng’s 

results supported the hypothesis that vectored targets “capture richer information about 

the decision making process . . .” [6]. 

 

While, previous research has focused on either extracting information from neural 

networks [8,9], or using statistically generated data [5,6] for training, the novel approach 

we propose in this paper is to use the approximated network as an oracle. The next 

section explains the details of the oracle learning process. 



www.manaraa.com

Appendix B. Network Simplification through Oracle Learning 

 242 

2 Oracle Learning 

 

Oracle learning involves the following 3 steps: 

 

A. Oracle Preparing 

B. Data Labeling 

C. Oracle Learning 

 

2.1 Oracle Preparing 

The primary component in oracle learning is the oracle itself. Since the accuracy of the 

oracle ANN directly influences the performance of the final, simpler ANN, the oracle 

should be the most accurate classifier available, regardless of complexity (number of 

hidden nodes). The only requirement is that the number and type of the inputs and the 

outputs of each ANN (the oracle and the OTN) be the same.  

 

2.2 Data Labeling 

The main step in oracle learning is to use the oracle ANN to create a very large training 

set for the OTN to use. Fortunately the training set does not have to be pre-labeled since 

the OTN only needs the oracle ANN’s outputs for a given input. Therefore the training 

set can consist of as many data points as there are available, including unlabeled points.  

 

The key to the success of oracle learning is to obtain as much data as possible that ideally 

fit the distribution of the problem. There are several ways to approach this. In [6], Zeng 
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and Martinez use the statistical distribution of the training set to create data. Another 

approach is to add random jitter to the training set, again following its distribution. The 

easiest way to fit the distribution is to have more unlabeled real data. In many problems, 

like ASR, there are more than enough unlabeled data. Other problems where there are 

plenty of unlabeled data include intelligent web document classifying, optical character 

recognition, and any other problem where gathering the data is far easier than labeling 

them. The oracle ANN can label as much of the data as necessary to train the OTN at the 

phoneme level. Therefore, the OTN has access to an arbitrary amount of ideally 

distributed training data. 

  

In detail, this step must create a target vector t for each input vector x where each ti in t1 . 

. . tn  (n being the number of output nodes) is equal to the oracle ANN’s activation of 

output i given x. Then, the final oracle learning data point contains both x and t. In order 

to create the points, each available pattern x (labeled or not, but not including a small 

labeled subset for testing) is presented as an input to the oracle which then returns the 

output vector t. The OTN’s training set then consists of every x paired with its 

corresponding t. 

 

As an example, the following two vectors represent the target vectors for a given input. 

The first vector is a standard 0-1 encoded target where the 4th class is the correct one. The 

second is more representative of an ANN output vector (the oracle for the following 

experiments) where the outputs are between 0 and 1, and the 4th class is still the highest. 
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(1) <0,0,0,1,0> 

 

(2)  <0.27, 0.34, 0.45, 0.89, 0.29> 

 

Now suppose the OTN outputs the following vector: 

  

(3) <0.19, 0.43, 0.3, 0.77, 0.04> 

 

The standard error would simply be the difference between the target vector in (1) and 

the output vector in (3) which is: 

 

(4) <-0.19, -0.43, -0.3, 0.23, -0.04>. 

 

Whereas the oracle-trained error would be the difference between the target vector in (2) 

and the output in (3): 

 

(5) <0.08, -0.09, 0.15, 0.12, 0.25> 

 

Notice the oracle-trained error in (5) is on average lower than the standard error in (4), 

and therefore the OTN learns a function that may be easier for standard back-

propagation. 
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Once again, Zeng and Martinez found the use of vectored targets to give improved 

accuracy over using standard targets in [6]. 

 

2.3 Oracle Learning 

For the final step, the OTN is trained using the data generated in step 2, making sure to 

utilize the targets exactly as presented in the target vector. The OTN must interpret each 

element of each target vector as the correct output activation for the output node it 

represents given the input paired with it, hence the ANN’s learning algorithm may need 

to be modified depending on how it handles targets. For most ANNs, classification 

targets are encoded in binary with the correct class as 1 and all others as 0 and hence the 

error is generally computed as {0 | 1} - oi where oi  represents the output of node i. With 

oracle learning, the error would instead be the ti – oi where, as stated above, ti is the ith 

element of the target vector t paired with the input x. The outputs of the OTN will 

approach the target vectors of the oracle ANN on each data point as training continues. 

 

3 Experiment 

 

One of the most popular applications for smaller computing devices (i.e. hand held 

organizers, cellular phones, etc.) and other embedded devices is automated speech 

recognition (ASR). Since the interfaces are limited in smaller devices, being able to 

recognize speech allows the user to more efficiently enter data. Given the demand and 

usefulness of speech recognition in systems lacking in memory and processing power, 

there is a demand for simpler ASR engines capable of achieving acceptable accuracy. 
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Hence the following experiments seek to reduce the complexity of our current ASR 

engine—or more specifically, the phoneme classifying ANN portion of the engine. 

 

The following experiments use data from the unlabeled TI digit corpus [10] for testing 

the ability of the oracle ANN to create accurate phoneme level labels for the OTN. The 

corpus was partitioned into a training set of 15,322 utterances (3,000,000 phonemes), and 

a test set of 1000 utterances. A small subset of the training corpus consisting of around 

40,000 phonemes was labeled at the phoneme level for training the oracle ANN. The 

inputs are the first 13 mel cepstral coefficients and their derivatives in a 16 ms frame 

extracted from wav files every 10 ms (overlapping). 

 

It is important to mention the fact that the final measure of accuracy is performed at the 

word and utterance levels, not the phoneme level. In general, word and sentence 

accuracies are more significant in speech recognition and do not always directly correlate 

with phoneme accuracy. It depends on the decoding technique and / or speech model 

used to build phonemes into words. In fact, in preliminary experiments, the standard 

trained networks always had slightly better phoneme accuracies than the OTNs (for any 

size). 

  

Figure 1 diagrams the basics of the ASR engine used for the experiments. The mel 

cepstral coefficients are fed into the ANN and the ANN phoneme outputs are decoded 

into words. Both the oracle ANN and the OTN are used as the neural network recognizer 

part of the engine when determining word and utterance accuracy. 
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Figure 1. The basic ASR Engine. 

 

A) Obtaining the Oracles 

 

The ASR engine’s standard neural network recognizer is a 200 hidden node standard 

back-propagation-trained feed-forward network that has been tuned and optimized over 

time. In the following experiment, the ANN is trained directly on the phoneme labeled 

training data, storing the ANN weight configurations for future testing. Although the 

ANN most accurate on the test set (words and utterances) was chosen as the oracle ANN, 

any one of them was sufficient to validate oracle learning as long as the OTN achieves 
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similar accuracy. We chose to use the most accurate ANN in order to create the most 

accurate OTN. 

 

B) Labeling the Data Set 

 

For the next step a large training set was created from the unlabeled data. The entire 

15,000+ utterance training set was used to create a new training set consisting of the 

inputs from the old set combined with the target vectors from each oracle (one data set 

for each oracle), acquiring the target vectors as explained in section 2.2 (from the oracle 

ANN’s outputs). In detail, oracle learning presents the oracle with an input pattern and 

then saves the activations of each output node for that input as a vector. The new OTN’s 

training vector then consists of the original input and the new target vector. 

 

C) Oracle Learning 

  

Finally, the large OTN training set created in B is used to train an ANN half the size of 

the oracle (100 hidden nodes) using vectored targets instead of 0-1 targets according to 

the method described in section 2.3. For a given training pattern, the error back-

propagated was set to the difference between the oracle ANN’s output node activation 

and the OTN’s output or ti – oi where ti is the oracle’s output for class i and oi is the 

output of the OTN net on class i.  
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To measure the effectiveness of oracle learning during the training phase, several metrics 

were used: the mean error with respect to the target vector, accuracy compared to the 

oracle ANN, and the top 100 OTN outputs compared the top 100 oracle ANN outputs. 

The general trend during training was for each of the metrics to improve, however, 

contrary to intuition, the best OTNs did not have the best values according to our metrics. 

It would be intuitive to believe the ANN with the least error with respect to the oracle 

would perform most like the oracle and hence have the best overall accuracy, but it did 

not. We hypothesize the reason was the phoneme-to-word decoding module did better 

with networks better arranging the ordering (from highest to lowest) of the output 

activation levels, regardless of the single highest output of the oracle ANN. The decoder 

considers more than just the top output, so where the next several outputs are ordered 

correctly, better word accuracy results. Therefore, even though one network may be more 

likely to have the same highest scoring phoneme as the oracle, the final ordering of the 

probabilities is better in a network with slightly a worse overall accuracy against the 

oracle.  

 

A standard 100 hidden node network was also trained in order to compare it to the oracle 

learning 100 hidden node OTN (200 à  100). 

 

After every oracle learning epoch, word and utterance accuracies were gathered and the 

respective OTN weights saved. The weights of the most accurate epoch were chosen as 

the best OTN of that particular oracle learning run. 
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4 Results and Analysis 

 

Table 1 reports the accuracy for each of the mentioned ANNs on the test set (the standard 

back-propagation-trained 200-hidden node ANN used as the oracle, the OTN (200 à  

100) and the 100 hidden node standard net). Sentence accuracy refers to the percentage of 

times where the ASR system recognized the digits in an utterance correctly. 

 

Table 1. ORACLE LEARNING ACCURACIES 

Network 
configuration 

Word % Sentence % 

200 hidden 
nodes 

(standard, the 
oracle ANN) 

99.59 98.70 

OTN (200 à  
100) 

99.56 98.60 

100 hidden 
nodes 

(standard) 
99.41 98.10 

  

As seen above, an OTN (200 à  100), having half as many hidden nodes than its oracle, 

achieves a comparable accuracy, 99.56% instead of 99.59%. The OTN (200 à  100)’s 

accuracy also demonstrates 25% less error than training a 100 hidden node net with the 

standard back-propagation approach (99.56% vs. 99.41%). 

 

One reason for the improvement is that the OTN can train as long as necessary to over-fit 

on the oracle ANN’s outputs using the large amount of unlabeled data and hence “sees” 

far more data points than the standard trained network which can only be trained with 

labeled data. Also the fact that the OTN (200 à  100) is learning a simpler function than 
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the 0-1 encoding the standard 100-node network must learn may aid its improved 

accuracy.  

 

5 Conclusion and Future Work 

 

The results of the experiment support the theory that training a smaller ANN to 

approximate a larger ANN results in 1) a less complex network capable of accuracy 

comparable to its oracle, and 2) improved accuracy over standard training of smaller 

ANNs. An OTN with half the complexity of its oracle had significantly less error than the 

standard trained model, and achieved comparable accuracy to its oracle. 

 

Future work in this area includes several more experiments. First, research will be done 

to determine how well even smaller ANNs perform when approximating both the original 

oracle and even approximating larger OTNs. It is important to determine the relation 

between the sizes of both the OTN and its oracle ANN. For example, does a 50 hidden 

node network yield better results approximating the original 200 hidden node oracle or an 

OTN (200 à  100)? Next, even more powerful oracles will be obtained (including 

mixture models, ensembles, etc.) to ascertain the robustness of using OTNs when 

presented with non-ANN oracles. 

 

Preliminary results in the above areas indicate that the closer the complexity of the oracle 

ANN to the OTN, the better the OTN performs. For example, in one experiment, an OTN 

(100 à  50) achieved higher accuracies than an OTN (200 à  50). If this trend persists, 
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the ideal size will be determined (number of hidden nodes) for an OTN to approximate 

even more complex oracles (mixture models, ensembles, etc.) to reveal how the 

complexity of an ANN relates to the complexity of non-ANN models. 

 

Other research includes using the above complexity measures to develop a system for 

more accurately comparing complexity between different classifier models (i.e. ANN 

compared to mixture-of-gaussian ASR models). The system would be in terms of the 

number of hidden nodes needed to effectively approximate a given model and would be 

obtained by simply oracle-training ANNs of various sizes using the model being 

measured as the oracle. The main problem in this area would be handling the different 

inductive biases between the models. 

 

The ASR engine used in the experiment uses a decoder that takes as much advantage of 

the order of the outputs as it does the single highest output. Therefore, in order to 

determine if oracle learning can be as effective in problems that do not require or lend 

themselves to decoding, further experiments will compare and contrast decoded and non-

decoded problems to find the correlation. 
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